charmonium 'spectroscopy' from lattice QCD Jo Dudek

Jefferson Lab / Old Dominion University

will cover:

- * sub-threshold charmonium
- * excited states in charmonium
- * radiative charmonium physics

displays most of the 'fundamental' problems pions show up less won't cover:

- * bottomonium please address questions to NRQCD experts (I'm not one)
- * heavy-light light-quark dominated? pions

baryons

personal opinions - will find out in the next 30mins if these are controversial

OLD DMINION UNIVERSITY

Lattice QCD Spectroscopy

spectrum situation

will focus on charmonium since that's where a lot of the action is currently sub-threshold states now mostly established $D\bar{D}$ 3770 narrow widths from OZI 3686 π 's 3638 000000000 =14(7)Me X_{c2} 3555 h_c 3525 Kʻs =2.0(1)MeV 000000000 3510 <1MeV =0.9(1)MeV 000000000 **//**/s 3415 E1,M2 Å_{c0} M1' radiative transitions **E1** E1,M2,E3 e.g. $\chi_{c0} \rightarrow //\psi \gamma$ $\pi\pi$ transitions e.g. ψ(3686) → J/ψ ππ (J/ψ) 3097 =93keV two photon decays 2980 $\eta_{\rm c}$ **M1** =27(4)MeV • e.g. $\chi_{c2} \rightarrow \gamma \gamma$ 0^{-+}

two-point functions

basic spectral information comes from hadronic two-point functions

$$C_{ij}(t) = \sum_{\vec{x}} \langle 0 | \mathcal{O}_i(\vec{x}, t) \mathcal{O}(\vec{0}, 0) | 0 \rangle$$

$$= \sum_N \langle 0 | e^{Ht} \mathcal{O}_i(\vec{0}, 0) e^{-Ht} | N \rangle \langle N | \mathcal{O}_j(\vec{0}, 0) | 0 \rangle$$

$$= \sum_N \langle 0 | \mathcal{O}_i(\vec{0}, 0) | N \rangle \langle N | \mathcal{O}_j(\vec{0}, 0) | 0 \rangle e^{-E_N t}$$

- the states labeled by N are all the eigenstates of the QCD Hamiltonian with the external quantum numbers of
- the interpolating fields (or operators) () are combinations of quark and gluon fields
 - e.g. a simple (local) interpolating field for a pseudoscalar is $\bar{\psi}(\vec{0},0)\gamma^5\psi(\vec{0},0)$
 - if the quark fields correspond to charm quarks, the sum over N includes all pseudoscalar states that have a non-zero amplitude to be in a \overline{CC} Fock state with both at the origin

sub-threshold

sub-threshold states are ideal for lattice computation ('gold-plated')

neglect the OZI suppressed decays - i.e. don't compute disconnected correlators

• e.g. using fermion bilinears $C(t) = \langle \bar{q}(t) \Gamma q(t) \cdot \bar{q}(0) \Gamma q(0) \rangle$

- The most obvious problem in the past is the hyperfine structure, especially the $J/\psi-\eta_c$ splitting
 - believed to be a short distance effect, so must have short distance physics 'right'
 - lattice is discrete on a scale a
 - physics at shorter distance scales controlled by the particular discretisation used - "improved actions"

sub-threshold

also important that the coupling constant is right at short distances usually set at large distances \rightarrow runs \rightarrow need right β function $g^{2}(k) = \frac{g^{2}}{1 + \frac{g^{2}}{2(4\pi)^{2}}(33 - 2N_{f})\log\frac{k^{2}}{4\pi}}$ so quenching the light quarks is a bad idea one recent example using an improved action and dynamical light quarks 3.8Phys.Rev.D75:054502,2007 (HPQCD & UKQCD) $a \sim 0.09 \,\mathrm{fm}$, $m_{\pi} \sim 250 \,\mathrm{MeV}$ 3.6no disconnected correlators Mass (Gev) 3.43.2 $\psi(1s)$ 3 disconnected diagrams remain the largest challenge (both computationally and theoretically) in this region (ask me - I have more)

fine structure

- newly observed spin singlets, $\eta_c(2S)$, h_c , are of interest
- especially their splittings from the $\psi(2S)$, χ_{cJ}
 - (a good idea to use a basis of operators technical analysis issue)
 - this sort of precision measurement requires improved actions, probably light sea quarks and probably inclusion of disconnected diagrams
 - I defer to precision experts here...
 - improving the precision is a very important problem
 - I'd like to focus on the 'other' problem what further quantities can be computed (worry about the precision later - soon hopefully)

excited states

- lightest state with each J^{PC} is technically easy to extract $C(t o\infty) o e^{-m_0t}$
 - excited states are more challenging
 - technical problem / theoretical problem

technical problem:

how do we actually extract reliable estimates of spectral quantities from correlators?

I believe this is 'solved':

variational solution to matrix of correlators

theoretical problem

what happens to the spectrum of states when they can decay? *i.e. "how does one deal with resonances?"*

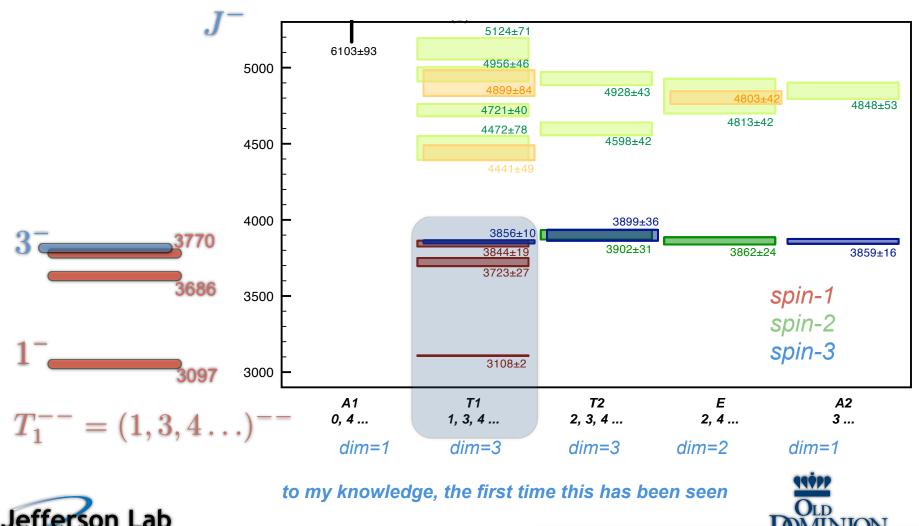
'Realistic' investigation of this has just begun: Lüscher Method spectrum in a finite box → S-matrix

excited states - technical problem

- compute a matrix of correlators $C_{ij}(t) = \langle \mathcal{O}_i(t)\mathcal{O}_j(0) \rangle$ using a bunch of interpolating fields, e.g. $\overline{\psi} \Gamma \psi \quad \overline{\psi} \Gamma D_k \psi \quad \overline{\psi} \Gamma D_j \overrightarrow{D}_k \psi$
- a variational solution can be found utilises the orthogonality of state vectors
 - very successful at extracting multiple excited states in a given J^{PC}

variational method

e.g. recent (quenched) "charmonium" study (vector channel)



Thomas Jefferson National Accelerator Facility

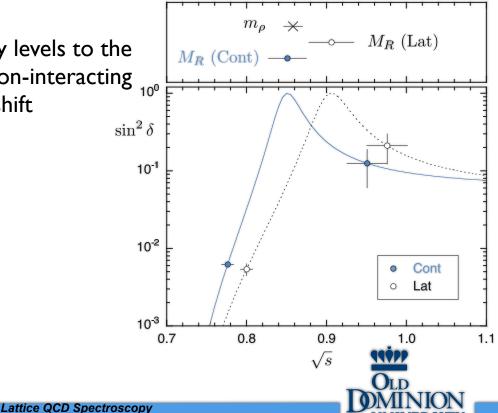
Lattice QCD Spectroscopy

excited states - theoretical problem

- how do we extract the mass and width of a resonance?
 - e.g. consider the ho meson which decays to $\pi\pi$
 - might try $C(t) = \langle \bar{q}(t)\gamma^i q(t) \cdot \bar{q}(0)\gamma^i q(0) \rangle \rightarrow e^{-E_0 t}$ as $t \rightarrow \infty$
 - will give us the lightest I⁻⁻ eigenstate of QCD
 - this is two pions in a *P*-wave rest energy = $2m_{\pi}$
 - in an infinite box there are a continuum of such states
 - looks hopeless
- Lüscher (and others) have shown that in the **finite box** we work with in lattice QCD, there is a mapping between the energy levels extracted and the elastic scattering matrix (i.e. the phase shift)
 - in a periodic finite box, all energy levels are discrete so perhaps we can extract a small number and infer something about resonances?
 - one recent 'successful' application

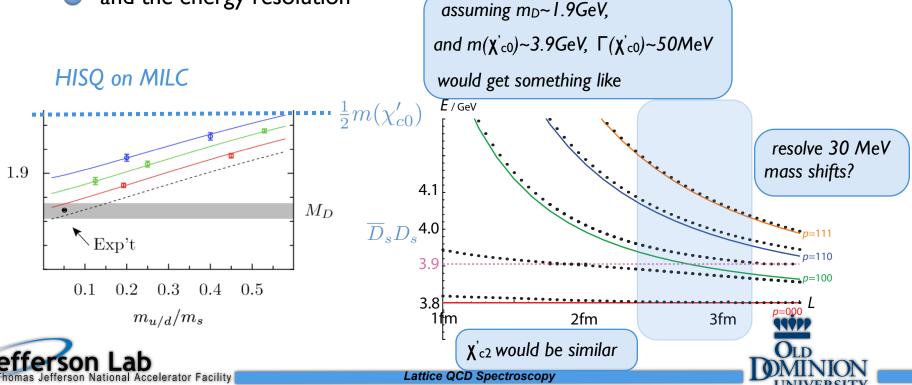
ρ meson as a $\pi\pi$ resonance

- CP-PACS recently used the Gottlieb-Rummukainen extension of the Lüscher method to study the ρ meson as a resonance in $\pi\pi$
 - at a fixed lattice volume they extracted two energy levels using a correlation matrix constructed from
 - a " ρ -like" $\bar{q}q$ (wavefunction at the origin) operator
 -) a " $\pi\pi$ -like" separated $\bar{q}q \bar{q}q$ operator
 - by comparing the extracted energy levels to the expected discrete levels for two non-interacting pions they inferred the $\pi\pi$ phase-shift
 - simulation not at physical point
 - $m_{\rho}/m_{\pi} \sim 2.4$



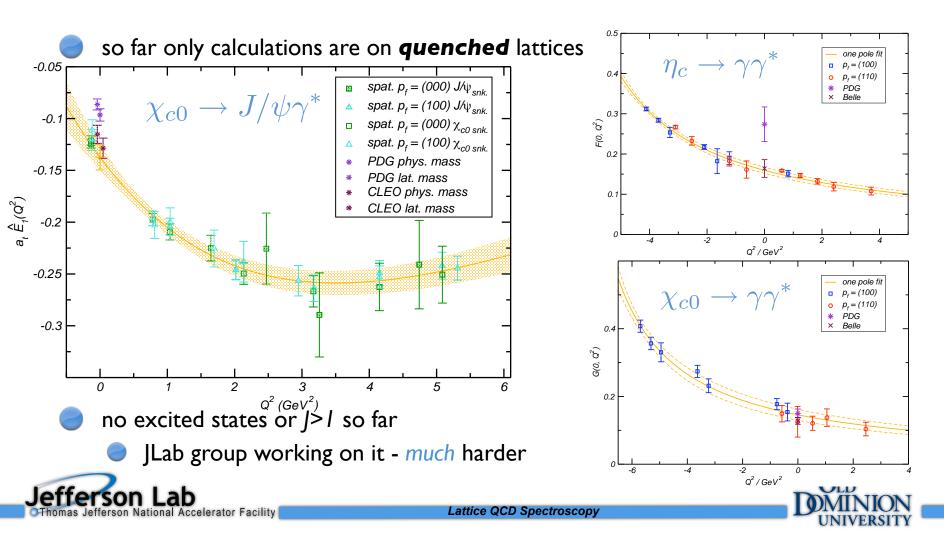
charmonium application?

- the first excited χ'_{c0} state would be a good place to try this out in charmonium observed $\chi'_{c2}(3930)$ suggests $\chi'_{c0}(\sim 3900)$ for which only $\overline{D}D$ is open
 - is this practical on current lattices?
 - depends upon the D-meson mass at available quark masses
 - and the available volumes
 - and the energy resolution



other 'spectroscopic' quantities

- radiative transitions and two-photon couplings can be obtained from three-point correlators
 - N.B. two-photon fusion is the production mechanism for the new $\chi'_{c2}(3930)$



X(3872) - an interesting case

X(3872)

unreasonably close to thresholds for D^+D^{*-} , $D^0\overline{D}^{*0}$ (I MeV away?)

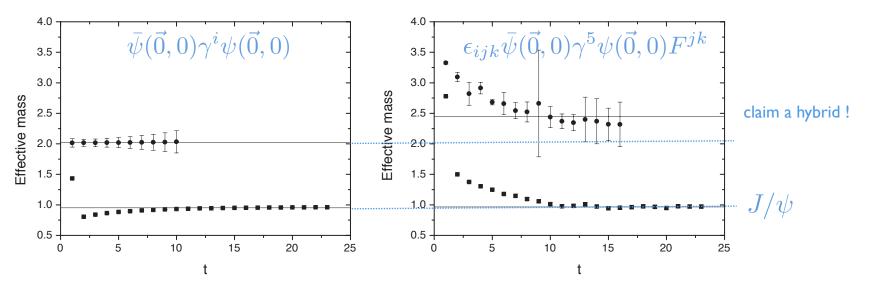
- so close that isospin violation comes into play
- no hope of tuning everything to the precision required for direct lattice study
 if 'binding' energy really ±1 MeV, potentially long distance tail to wavefunction
- but still interesting to observe behaviour as quark mass & lattice volume change
 perhaps as input to effective field theory models?

Y(4260) (1⁻⁻)

- model suggestions that it might be a non-exotic hybrid
 - on a lattice this guy will be very tough!
 - above threshold for decay to $\overline{D}D$, $\overline{D}D^*$, \overline{D}^*D^* , \overline{D}_sD_s , $\overline{D}_sD_s^*$
 - and above the J/ ψ , ψ (2S) and probably three resonances, ψ (3770), ψ (4040), ψ (4150)
 - need some major theoretical advances to consider this state
 - but far from understood phenomenologically!
 - decay into $\pi\pi$ // ψ seen, but hadronic width is such it must be decaying elsewhere too
 - but doesn't show up as a peak in the exclusive
 - or (visibly) in the new exclusive data (CLEO, Belle, BaBar)
 - nodelling job needs a (unitary!) coupled-channels fit including interferences properly

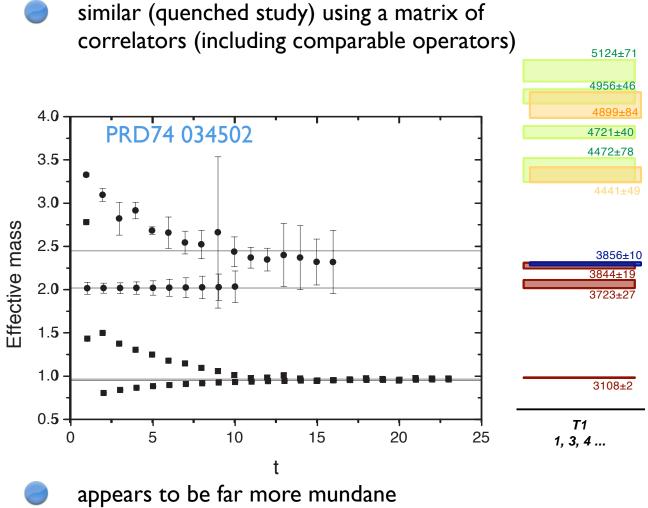
interpolating fields & state interpretation

- it is a common mistake (even one made by some lattice theorists) to think that the "internal" structure of the interpolating field directly tells you the nature of states
 -) e.g. any state produced using $ar{\psi}(ec{0},0)\gamma^i\psi(ec{0},0)$ must be a "conventional" $ar{c}c~1$
 - any state produced using, say, $\epsilon_{ijk}\bar\psi(ec 0,0)\gamma^5\psi(ec 0,0)F^{jk}$, must be a "hybrid" because of the gluonic factor
 - see e.g. "Gluonic excitation of non-exotic hybrid charmonium from lattice QCD" X-Q. Luo & Y. Liu (PRD74 034502)quenched



if a "hybrid" is anything overlapping the second operator, then do we have to rethink the J/ψ ?

large basis of operators

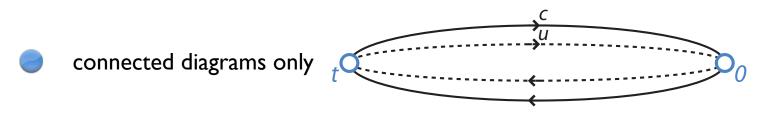


explanations for these correlators

Lattice QCD Spectroscopy

more (quenched) Y(4260) claims

Chiu & Hsieh "Y(4260) on the lattice" (PRD73 094510)
 compute correlators with multiquark operators, e.g. (\$\overline{q}\gamma_i c\$)(\$\overline{c}q\$)
 all quarks at same space point



technically this means isospin=1, but isospin=0 might be degenerate?

find ground state masses in the region of 4300-4500 MeV (after a crude extrapolation in m_q)

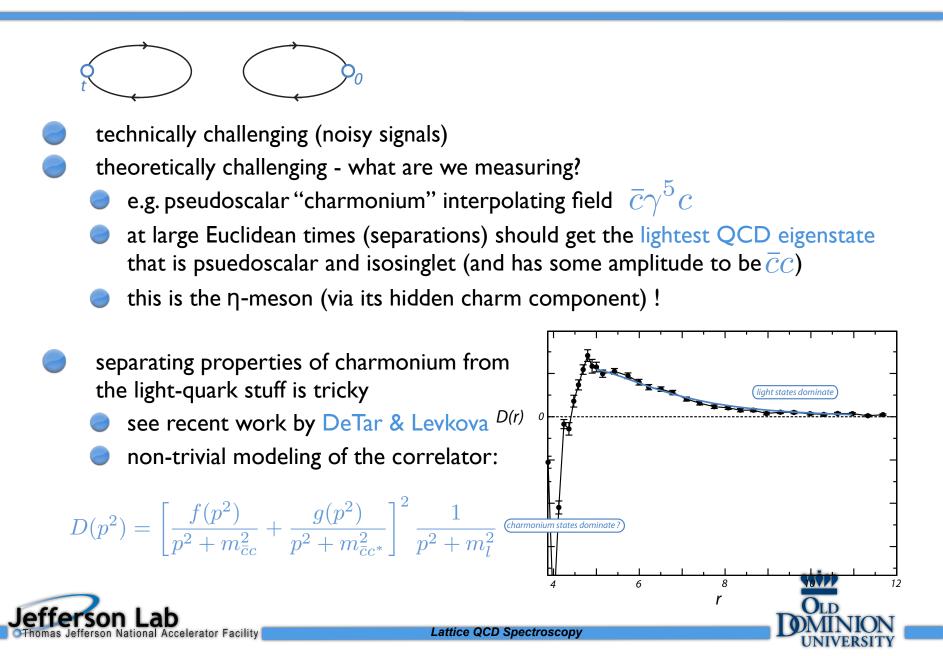
Z⁺(4430) ??

'seen' as a resonance in $\pi^+\psi(2S)$ by Belle via B-decays

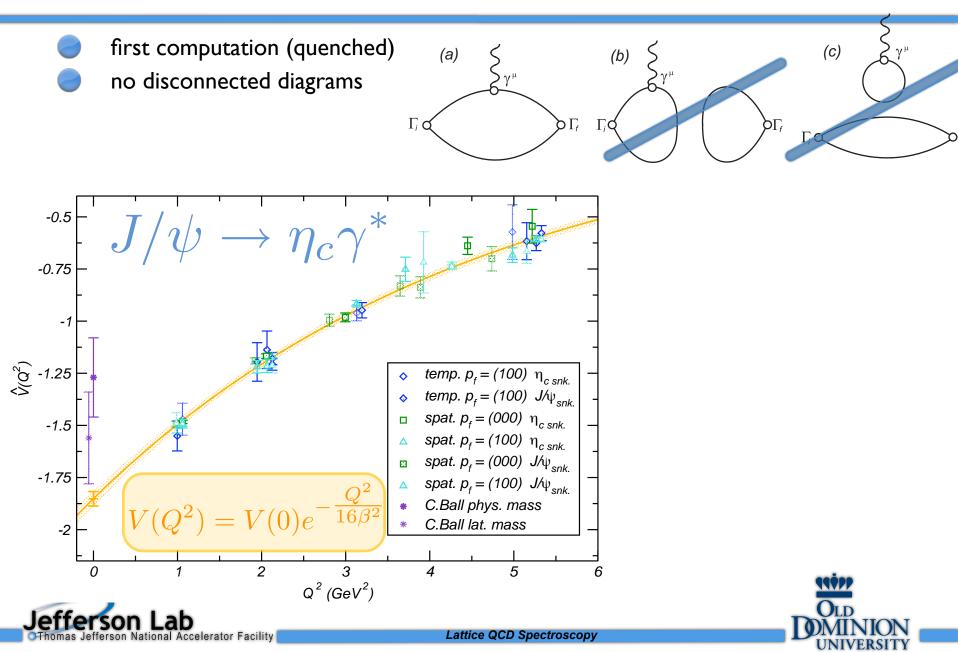
isospin one with large affinity for charmonium - might be interesting !?

potentially lots of decay channels open so similar problem to Y(4260)

disconnected contributions



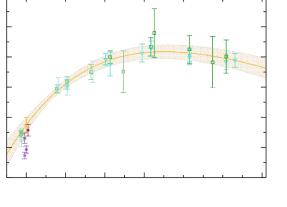
radiative transitions

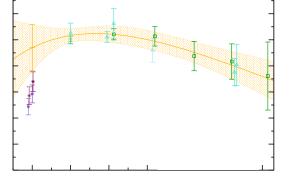


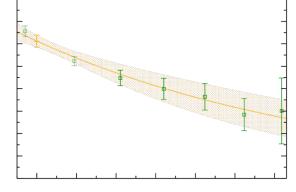
$IP \rightarrow IS$ transitions

fit form inspired by potential models with spin-dependent corrections

$$E_1(Q^2) = E_1(0) \left(1 + \frac{Q^2}{\rho^2}\right) e^{-\frac{Q^2}{16\beta^2}}$$







$$\chi_{c0} \rightarrow J/\psi \gamma_{E1}$$

 $\beta = 542(35) \,\mathrm{MeV}$
 $ho = 1.08(13) \,\mathrm{GeV}$

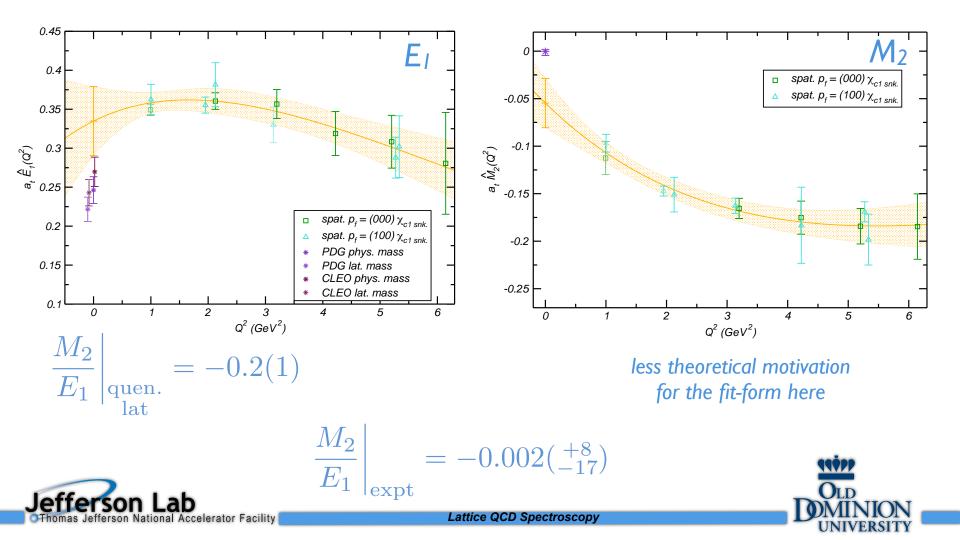
$$\begin{array}{c} \chi_{c1} \rightarrow J/\psi \gamma_{E1} & h_c \rightarrow \\ \beta = 555(113) \, \mathrm{MeV} & \beta = 689 \\ \rho = 1.65(59) \, \mathrm{GeV} & \rho \rightarrow \infty \end{array}$$

$$\begin{array}{c} h_c \to \eta_c \gamma_{E1} \\ \beta = 689(133) \,\mathrm{MeV} \end{array}$$

simplest quark model has all β equal and $\rho(\chi_{c0}) = 2 \beta$, $\rho(\chi_{c1}) = \sqrt{2} \cdot \rho(\chi_{c0})$, $\rho(h_c) \rightarrow \infty$

$\chi_{c1} \rightarrow J/\psi \gamma$ transition

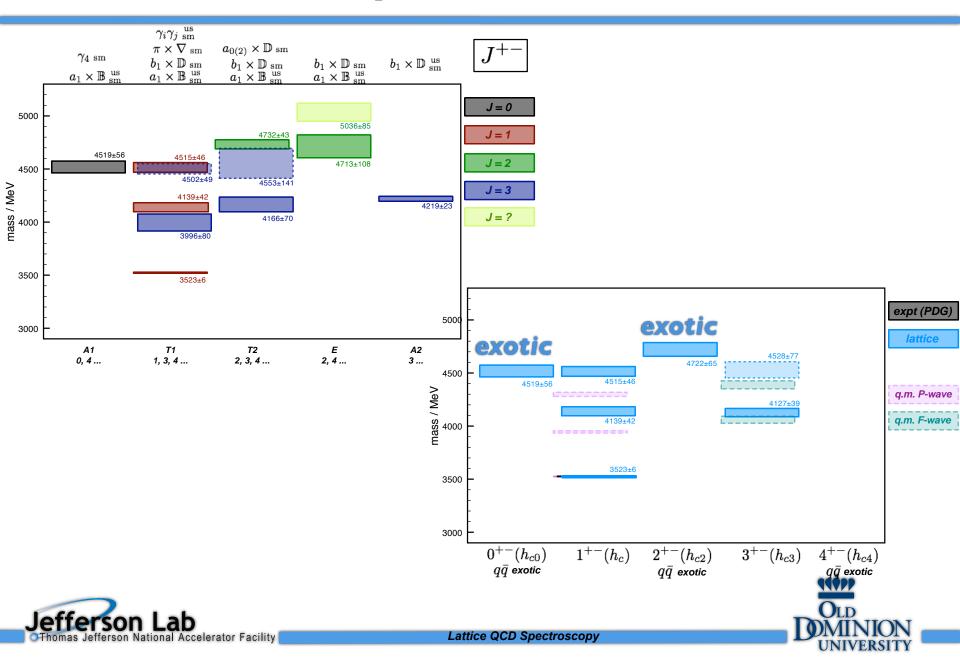
automatically access both the electric dipole and the magnetic quadrupole transitions



exotic quantum numbers?

- 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻ cannot be constructed from a Fock state
- hence 'exotic' no experimental charmonium candidates (to my knowledge)
- just build an operator with these quantum numbers!
- actually not quite a simple as it appears lattice symmetry is not continuum rotations, discrete cubic rotations
 - A₁ 0, 4...
 - T₁ 1, 3, 4...
 - **T**₂ **2**, **3**, **4**...
 - E 2, 4...
 - A₂ 3...
 - so the 0⁺⁻, 2⁺⁻ are probably straightforward
 - but I⁻⁺ could be confused with a non-exotic 4⁻⁺

exotic quantum number?



exotic quantum number?

