Analysis of $B^{0}-\bar{B}^{0}$ mixing parameters on the lattice

Elvira Gámiz

Lattice QCD Meets Experiment Workshop

- Fermilab, 11 December 2007 •

1. Introduction: $B_{0}-\bar{B}_{0}$ mixing parameters

\# Experimental measurements:

$$
\begin{gathered}
\left.\Delta M_{s}\right|_{\text {exp. }}=17.77 \pm 0.10(\text { stat }) \pm 0.07(\text { syst }) \mathrm{ps}^{-1} \mathrm{CDF} \\
\left.\Delta M_{d}\right|_{\text {exp. }}=0.507 \pm 0.005 \mathrm{ps}^{-1} \text { PDG07 average } \\
\left.\Delta \Gamma_{s}\right|_{\text {exp. }}=0.16_{-0.23}^{+0.10} \mathrm{ps}^{-1} \text { PDG07 average }
\end{gathered}
$$

1. Introduction: $B_{0}-\bar{B}_{0}$ mixing parameters

\# Experimental measurements:

$$
\begin{gathered}
\left.\Delta M_{s}\right|_{\text {exp. }}=17.77 \pm 0.10(\text { stat }) \pm 0.07(\text { syst }) \mathrm{ps}^{-1} \mathrm{CDF} \\
\left.\Delta M_{d}\right|_{\text {exp. }}=0.507 \pm 0.005 \mathrm{ps}^{-1} \text { PDG07 average } \\
\left.\Delta \Gamma_{s}\right|_{\text {exp. }}=0.16_{-0.23}^{+0.10} \mathrm{ps}^{-1} \text { PDG07 average }
\end{gathered}
$$

\# Possible new particles show up in the loops.
New physics can significantly affect $M_{12}^{s} \propto \Delta M_{s}$

* Γ_{12} dominated by CKM-favoured $b \rightarrow c \bar{c} s$ tree-level decays.
- theoretically: In the Standard Model

$$
\left.\Delta M_{q}\right|_{\text {theor. }}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}}\left|V_{t q}^{*} V_{t b}\right|^{2} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{q}} f_{B_{q}}^{2} \hat{B}_{B_{q}}
$$

where $x_{t}=m_{t}^{2} / M_{W}^{2}, \eta_{2}^{B}$ is a perturbative QCD correction factor and $S_{0}\left(x_{t}\right)$ is the Inami-Lim function.

Need accurate theoretical calculation of $f_{B_{q}}^{2} \hat{B}_{B_{q}}$

- theoretically: In the Standard Model

$$
\left.\Delta M_{q}\right|_{\text {theor. }}=\frac{G_{F}^{2} M_{W}^{2}}{6 \pi^{2}}\left|V_{t q}^{*} V_{t b}\right|^{2} \eta_{2}^{B} S_{0}\left(x_{t}\right) M_{B_{q}} f_{B_{q}}^{2} \hat{B}_{B_{q}}
$$

where $x_{t}=m_{t}^{2} / M_{W}^{2}, \eta_{2}^{B}$ is a perturbative QCD correction factor and $S_{0}\left(x_{t}\right)$ is the Inami-Lim function.

Need accurate theoretical calculation of $f_{B_{q}}^{2} \hat{B}_{B_{q}}$

\# Non-perturbative input

$$
\frac{8}{3} f_{B_{s}}^{2} B_{B_{s}}(\mu) M_{B_{s}}^{2}=\left\langle\overline{B_{s}^{0}}\right| Q_{1}\left|B_{s}^{0}\right\rangle(\mu) \quad \text { with } \quad O_{1} \equiv\left[\overline{b^{i}} s^{i}\right]_{V-A}\left[\overline{b^{j}} s^{j}\right]_{V-A}
$$

\# For $\Delta \Gamma_{q}$ one needs either $\left\langle\overline{B_{q}^{0}}\right| Q_{2}\left|B_{q}^{0}\right\rangle(\mu)$ and $\left\langle\overline{B_{q}^{0}}\right| Q_{1}\left|B_{q}^{0}\right\rangle(\mu)$ or $\left\langle\overline{B_{q}^{0}}\right| Q_{3}\left|B_{q}^{0}\right\rangle(\mu)$ and $\left\langle\overline{B_{q}^{0}}\right| Q_{1}\left|B_{q}^{0}\right\rangle(\mu)$

$$
\begin{aligned}
O_{2} & \equiv\left[\overline{b^{i}} s^{i}\right]_{S-P}\left[\overline{b^{j}} s^{j}\right]_{S-P} \\
O_{3} & \equiv\left[\overline{b^{i}} s^{j}\right]_{S-P}\left[\overline{b^{j}} s^{i}\right]_{S-P}
\end{aligned}
$$

Precise determination of CKM matrix elements

$$
\left|\frac{V_{t d}}{V_{t s}}\right|=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}} \underbrace{\sqrt{\frac{\Delta M_{d} M_{B_{s}}}{\Delta M_{s} M_{B_{d}}}}}_{\begin{array}{c}
\text { known experiment. } \\
\text { better than } 1 \%
\end{array}}
$$

* Many uncertainties in the theoretical (lattice) determination cancel totally or partially in the ratio

Precise determination of CKM matrix elements

$$
\left|\frac{V_{t d}}{V_{t s}}\right|=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}} \quad \underbrace{\sqrt{\frac{\Delta M_{d} M_{B_{s}}}{\Delta M_{s} M_{B_{d}}}}}
$$

known experiment.
better than 1%

* Many uncertainties in the theoretical (lattice) determination cancel totally or partially in the ratio

$$
\text { Calculating } \xi=\frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}} \text { with a few percent error }
$$

2. Unquenched lattice determinations of B_{0} mixing parameters

Quenched approximation : neglect/vacuum polarization effects \rightarrow uncontrolled and irreaticible errors
\# Unquenched determinations with $2+1$ flavours of sea quarks

- HPQCD: E. Dalgic, A. Gray, E. G., C.T.H. Davies, G.P. Lepage,
J. Shigemitsu, H. Trottier, M. Wingate
- Fermilab lattice/MILC: R.T. Evans, E.G., A.X. El-Khadra, M. di Pierro
- RBC/UKQCD: C. Albertus et al.
* In a very early stage: static limit, $m_{\text {pion }} \geq 400 \mathrm{MeV}$, disagreement between results with different techniques

2. Unquenched lattice determinations of B_{0} mixing parameters

Quenched approximation : neglect/vacuum polarization effects \rightarrow uncontrolled and irreatibible errors
\# Unquenched determinations with $2+1$ flavours of sea quarks

- HPQCD: E. Dalgic, A. Gray, E. G., C.T.H. Davies, G.P. Lepage,

```
    J. Shigemitsu, H. Trottier, M. Wingate
```

- Fermilab lattice/MILC: R.T. Evans, E.G., A.X. El-Khadra, M. di Pierro
- RBC/UKQCD: C. Albertus et al.
* In a very early stage: static limit, $m_{\text {pion }} \geq 400 \mathrm{MeV}$,
disagreement between results with different techniques

2.1. Fermion formulations and matching

MILC $N_{f}^{s e a}=2+1$ configurations

	HPQCD	Fermilab/MILC
Light fermions	Asqtad	Asqtad
Heavy fermions	NRQCD	Fermilab
Matching	Perturbative: one-loop	Perturbative: one-Ioop

- Asqtad action: improved staggered quarks \Longrightarrow errors $\mathcal{O}\left(a^{2} \alpha_{s}\right), \mathcal{O}\left(a^{4}\right)$

2.1. Fermion formulations and matching

$$
\text { MILC } N_{f}^{\text {sea }}=2+1 \text { configurations }
$$

	HPQCD	Fermilab/MILC
Light fermions	Asqtad	Asqtad
Heavy fermions	NRQCD	Fermilab
Matching	Perturbative: one-loop	Perturbative: one-Ioop

- Asqtad action: improved staggered quarks $\Longrightarrow \operatorname{errors} \mathcal{O}\left(a^{2} \alpha_{s}\right), \mathcal{O}\left(a^{4}\right)$
- NRQCD: Non-relativistic QCD improved through $\mathcal{O}\left(1 / M^{2}\right), \mathcal{O}\left(a^{2}\right)$ and leading relativistic $\mathcal{O}\left(1 / M^{3}\right)$

2.1. Fermion formulations and matching

MILC $N_{f}^{\text {sea }}=2+1$ configurations

	HPQCD	Fermilab/MILC
Light fermions	Asqtad	Asqtad
Heavy fermions	NRQCD	Fermilab
Matching	Perturbative: one-loop	Perturbative: one-Ioop

- Asqtad action: improved staggered quarks \Longrightarrow errors $\mathcal{O}\left(a^{2} \alpha_{s}\right), \mathcal{O}\left(a^{4}\right)$
- NRQCD: Non-relativistic QCD improved through $\mathcal{O}\left(1 / M^{2}\right), \mathcal{O}\left(a^{2}\right)$ and leading relativistic $\mathcal{O}\left(1 / M^{3}\right)$
- Fermilab action: clover action with Fermilab interpretation
(El-Khadra, Kronfeld, Mackenzie)
* Errors: $\mathcal{O}\left(\alpha_{s} \Lambda_{Q C D} / M\right), \mathcal{O}\left(\left(\Lambda_{Q C D} / M\right)^{2}\right)$

2.1. Fermion formulations and matching

MILC $N_{f}^{\text {sea }}=2+1$ configurations

	HPQCD	Fermilab/MILC
Light fermions	Asqtad	Asqtad
Heavy fermions	NRQCD	Fermilab
Matching	Perturbative: one-loop	Perturbative: one-Ioop

- Asqtad action: improved staggered quarks \Longrightarrow errors $\mathcal{O}\left(a^{2} \alpha_{s}\right), \mathcal{O}\left(a^{4}\right)$
- NRQCD: Non-relativistic QCD improved through $\mathcal{O}\left(1 / M^{2}\right), \mathcal{O}\left(a^{2}\right)$ and leading relativistic $\mathcal{O}\left(1 / M^{3}\right)$
- Fermilab action: clover action with Fermilab interpretation
(El-Khadra, Kronfeld, Mackenzie)
* Errors: $\mathcal{O}\left(\alpha_{s} \Lambda_{Q C D} / M\right), \mathcal{O}\left(\left(\Lambda_{Q C D} / M\right)^{2}\right)$
- Improved gluon action

	a	$\# m_{\text {light }}^{\text {sea }} / m_{s}^{\text {sea }}$	$\# m^{\text {valence }}$
HPQCD	0.12 fm	4	full QCD
	0.09 fm	2	
Fermilab /MILC	0.12 fm	4	6 (include full QCD)
	0.09 fm	2	

	a	$\# m_{\text {light }}^{\text {sea }} / m_{s}^{\text {sea }}$	$\# m^{\text {valence }}$
HPQCD	0.12 fm	4	full QCD
	0.09 fm	2	
Fermilab /MILC	0.12 fm	4	6 (include full QCD)
	0.09 fm	2	

\Longrightarrow Light $\left(m_{u}^{s e a}=m_{d}^{s e a}\right)$ sea and valence quark masses as low as $\simeq m_{p h y s .}^{s} / 8 \rightarrow$ chiral regime

* Lightest pions $m_{\pi} \sim 230 \mathrm{MeV}$.
\Longrightarrow Valence m_{b} fixed to its physical value. Sea and valence m_{s} close to its physical value.

4. Preliminary results for $f_{B_{q}} \sqrt{B_{B_{q}}}$

with $m_{s}^{v a l e n c e}$ fixed to its physical value and $m_{s}^{\text {sea }}$ very close to it.

$$
\text { statistics+fitting errors } \sim 1-3 \%
$$

\# 1/M corrections not included yet.
Same for $f_{B_{d}} \sqrt{M_{B_{d}} B_{B_{d}}}$
4. Preliminary results for $f_{B_{q}} \sqrt{B_{B_{q}}}$

$f_{B_{q}} \sqrt{M_{B_{q}} \hat{B}_{B_{q}}}\left(G e V^{3 / 2}\right)$	Fermilab/MILC

Full QCD
4. Preliminary results for $f_{B_{q}} \sqrt{B_{B_{q}}}$

statistics+fitting errors $\sim 1-3 \%$

\# One-loop renormalization coefficients need to be checked (not included).

Preliminary results for ξ : Full QCD

$$
\xi=\left(f_{B_{s}} \sqrt{B_{B_{s}}}\right) /\left(f_{B_{d}} \sqrt{B_{B_{d}}}\right)
$$

statistics+fitting errors $\sim 1-2 \%$

Discussion of errors (2 lattice spacings)

(ranges cover both HPQCD and FNAL/MILC calculations)

	$f_{B_{q}} \sqrt{B_{B_{q}}}$	ξ
statistics+fitting	$1-3 \%$	$\sim 1-2 \%$
inputs $\left(a, m_{b} \ldots\right)$	2.5%	<0.1
Higher order matching	$\sim 3.5 \%$	cancel to a large extent
Heavy quark action	$1.5-2 \%$	$<0.2 \%$
Light quark discret. $+\quad$ PT fits	$2-4 \%^{*}$	$<2 \%^{*}$

\# Higher order matching errors naively estimated $\mathcal{O}\left(1 \times \alpha_{s}^{2}\right)$
\# Difference between tree level and one-loop results $<0.5 \%$ in ξ (to be compared with a $5-7 \%$ shift in $f_{B} \sqrt{B_{B}}$).

Discussion of errors (2 lattice spacings)

(ranges cover both HPQCD and FNAL/MILC calculations)

	$f_{B_{q}} \sqrt{B_{B_{q}}}$	ξ
statistics+fitting	$1-3 \%$	$\sim 1-2 \%$
inputs $\left(a, m_{b} \ldots\right)$	2.5%	<0.1
Higher order matching	$\sim 3.5 \%$	cancel to a large extent
Heavy quark action	$1.5-2 \%$	$<0.2 \%$
Light quark discret. $+\chi$ PT fits	$2-4 \%^{*}$	$<2 \%^{*}$

\# Higher order matching errors naively estimated $\mathcal{O}\left(1 \times \alpha_{s}^{2}\right)$
\# Difference between tree level and one-loop results $<0.5 \%$ in ξ (to be compared with a $5-7 \%$ shift in $f_{B} \sqrt{B_{B}}$).
\# Heavy quark discretization and relativistic effects estimated by power counting for the fine lattice ($a=0.09 \mathrm{fm}$).

Discussion of errors (2 lattice spacings)
 (ranges cover both HPQCD and FNAL/MILC calculations)

	$f_{B_{q}} \sqrt{B_{B_{q}}}$	ξ
statistics+fitting	$1-3 \%$	$\sim 1-2 \%$
inputs $\left(a, m_{b} \ldots\right)$	2.5%	$<0.1 \%$
Higher order matching	$\sim 3.5 \%$ cancel to a large extent	
Heavy quark action	$1.5-2 \%$	$<0.2 \%$
Light quark discret. $+\chi P T$ +	$2-4 \%^{*}$	$<2 \%^{*}$
Total (estimate)	$5-7 \%$	$2-3 \%$

\# Staggered χ PT can be used to remove the leading light quark discretization effects.

* Estimate based on previous f_{B} studies.

Discussion of errors: what can be expected from lattice in 2 years?

* Better statistics: More configurations, improved techniques for correlation fits (smearing, random wall sources)
statistics+fitting: error reduced by $1.5-2$

Discussion of errors: what can be expected from lattice in 2 years?

* Better statistics: More configurations, improved techniques for correlation fits (smearing, random wall sources)
statistics+fitting: error reduced by $1.5-2$
* Smaller values of lattice spacing: $a=0.09 \mathrm{fm}$ (fine) \rightarrow

$$
a=0.06 \mathrm{fm} \text { (hyperfine) }
$$

Discretization (Fermilab action): ~1.5
Discretization (NRQCD): ~ 2
Discretization (light quarks): ~ 2
Matching: $3.5 \% \rightarrow 2.6 \%$

Discussion of errors: what can be expected from lattice in 2 years?

* Better statistics: More configurations, improved techniques for correlation fits (smearing, random wall sources)
statistics+fitting: error reduced by 1.5-2
* Smaller values of lattice spacing: $a=0.09 \mathrm{fm}$ (fine) \rightarrow

$$
a=0.06 \mathrm{fm} \text { (hyperfine) }
$$

Discretization (Fermilab action): ~1.5
Discretization (NRQCD): ~ 2
Discretization (light quarks): ~ 2
Matching: $3.5 \% \rightarrow 2.6 \%$

* Improving the actions: HISQ, heavy formulations (improved Fermilab action, anchor point method, improved NRQCD).
* Better determination of inputs: a, m_{b}, \ldots
* Two-loop or non-perturbative renormalization

Discussion of errors: what can be expected from lattice in 2 years?

* Better statistics: More configurations, improved techniques for correlation fits (smearing, random wall sources)

Reduction of errors by a factor of $1.5-2$

* Smaller values of lattice spacing: $a=0.09 \mathrm{fm}$ (fine) \rightarrow

$$
a=0.06 \mathrm{fm} \text { (hyperfine) }
$$

Discretization (Fermilab action): ~ 1.5
Discretization (NRQCD): ~2
Discretization (light quarks): ~ 2
Matching: $3.5 \% \rightarrow 2.6 \%$

* Improving the actions: HISQ, heavy formulations (improved Fermilab action, anchor point method, improved NRQCD)
* Better determination of inputs: a, m_{b}, \ldots

5. B_{0} mixing beyond the SM

New physics can significantly affect $M_{12}^{s} \propto \Delta M_{s}$
\# Effects of heavy new particles seen in the form of effective operators built with SM degrees of freedom

5. B_{0} mixing beyond the SM

New physics can significantly affect $M_{12}^{s} \propto \Delta M_{s}$

\# Effects of heavy new particles seen in the form of effective operators built with SM degrees of freedom
\# The most general Effective Hamiltonian describing $\Delta F=2$ processes is

$$
\begin{gathered}
\mathcal{H}_{e f f}^{\Delta F=2}=\sum_{i=1}^{5} C_{i} Q_{i}+\sum_{i=1}^{3} \widetilde{C}_{i} \widetilde{Q}_{i} \quad \text { with } \\
Q_{1}^{q}=\left(\bar{\psi}_{f}^{i} \gamma^{\nu}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j} \gamma^{\nu}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right) \quad \text { SM } \\
Q_{2}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right) \quad Q_{3}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right) \\
Q_{4}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}+\gamma_{5}\right) \psi_{q}^{j}\right) \quad Q_{5}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}+\gamma_{5}\right) \psi_{q}^{i}\right) \\
\tilde{Q}_{1,2,3}^{q}=Q_{1,2,3}^{q} \text { with the replacement }\left(\mathrm{I} \pm \gamma_{5}\right) \rightarrow\left(\mathrm{I} \mp \gamma_{5}\right)
\end{gathered}
$$

where ψ_{q} is a heavy fermion field (b or c) and ψ_{f} a light fermion field.

5. B_{0} mixing beyond the SM

New physics can significantly affect $M_{12}^{s} \propto \Delta M_{s}$

\# Effects of heavy new particles seen in the form of effective operators built with SM degrees of freedom
\# The most general Effective Hamiltonian describing $\Delta F=2$ processes is

$$
\begin{gathered}
\mathcal{H}_{e f f}^{\Delta F=2}=\sum_{i=1}^{5} C_{i} Q_{i}+\sum_{i=1}^{3} \widetilde{C}_{i} \widetilde{Q}_{i} \quad \text { with } \\
Q_{1}^{q}=\left(\bar{\psi}_{f}^{i} \gamma^{\nu}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j} \gamma^{\nu}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right) \quad \text { SM } \\
Q_{2}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right) \quad Q_{3}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right) \\
Q_{4}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{i}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}+\gamma_{5}\right) \psi_{q}^{j}\right) \quad Q_{5}^{q}=\left(\bar{\psi}_{f}^{i}\left(\mathrm{I}-\gamma_{5}\right) \psi_{q}^{j}\right)\left(\bar{\psi}_{f}^{j}\left(\mathrm{I}+\gamma_{5}\right) \psi_{q}^{i}\right) \\
\tilde{Q}_{1,2,3}^{q}=Q_{1,2,3}^{q} \text { with the replacement }\left(\mathrm{I} \pm \gamma_{5}\right) \rightarrow\left(\mathrm{I} \mp \gamma_{5}\right)
\end{gathered}
$$

where ψ_{q} is a heavy fermion field (b or c) and ψ_{f} a light fermion field.

- C_{i}, \widetilde{C}_{i} Wilson coeff. calculated for a particular BSM theory
- $\left\langle\bar{F}^{0}\right| Q_{i}\left|F^{0}\right\rangle$ calculated on the lattice
\# Comparison of contributions from these extra operators, together with the SM prediction, with experiment can constraint some BSM parameters and help to understand BSM physics. Studies done by:

```
F. Gabbiani et al, Nucl.Phys.B477 (1996) general SUSY extensions
D. Bećirević et al, Nucl.Phys.B634 (2002) general SUSY models
P. Ball and R. Fleischer, Eur.Phys.J. C48(2006); extra Z' boson, SUSY
U. Nierste, talk at CTP Symposium on Supersymmetry at LHC; SUSY
J.K. Parry and H.H. Zhang, hep-ph/07105443, SUSY
```

* Quenched lattice calculation of matrix elements still the only ones available for these studies

Bećirević et al, JHEP 0204 (2002), Wilson fermions and static limit

Need an unquenched determination of the BSM matrix elements

$\left\langle\bar{B}^{0}\right| Q_{i}\left|B^{0}\right\rangle$ calculated on the lattice

\# Strong interactions conserve parity $\rightarrow\left\langle\widetilde{Q}_{i=1,2,3}\right\rangle=\left\langle Q_{i=1,2,3}\right\rangle$.

$$
5 \text { different matrix elements, }\left\langle\bar{B}^{0}{ }_{d(s)}\right| Q_{i=1-5}\left|B_{d(s)}^{0}\right\rangle
$$

$\left\langle\overline{B^{0}}\right| Q_{i}\left|B^{0}\right\rangle$ calculated on the lattice

\# Strong interactions conserve parity $\rightarrow\left\langle\widetilde{Q}_{i=1,2,3}\right\rangle=\left\langle Q_{i=1,2,3}\right\rangle$.

$$
5 \text { different matrix elements, }\left\langle\bar{B}^{0}{ }_{d(s)}\right| Q_{i=1-5}\left|B_{d(s)}^{0}\right\rangle .
$$

\# Same programme can be applied

- Chiral perturbation theory more involving (extra free parameters):

$$
\left\langle\overline{B_{d(s)}^{0}}\right| Q_{i=1-5}\left|B_{d(s)}^{0}\right\rangle \rightarrow \text { chiral } \Gamma_{i}(1+L)+\underbrace{\Gamma_{i}^{\prime} L^{\prime}}_{i \neq 1}+\text { analytic terms }
$$

$\left\langle\overline{B^{0}}\right| Q_{i}\left|B^{0}\right\rangle$ calculated on the lattice

\# Strong interactions conserve parity $\rightarrow\left\langle\widetilde{Q}_{i=1,2,3}\right\rangle=\left\langle Q_{i=1,2,3}\right\rangle$.

```
5 different matrix elements, }\langle\mp@subsup{\overline{B}}{}{0}\mp@subsup{}{d(s)}{}|\mp@subsup{Q}{i=1-5}{}|\mp@subsup{B}{d(s)}{0}\rangle
```

\# Same programme can be applied

- Chiral perturbation theory more involving (extra free parameters):

$$
\left\langle\overline{B_{d(s)}^{0}}\right| Q_{i=1-5}\left|B_{d(s)}^{0}\right\rangle \rightarrow_{\text {chiral }} \Gamma_{i}(1+L)+\underbrace{\Gamma_{i}^{\prime} L^{\prime}}_{i \neq 1}+\text { analytic terms }
$$

- Chiral extrapolations under control for Fermilab Lattice-MILC and HPQCD studies
\rightarrow errors not expected to be much larger than for the SM matrix element
\# On-going calculation: HPQCD col., E. G. et al.
$2+1$ unquenched analysis
NRQCD heavy + (staggered) Asqtad light
- First step: Calculation of matching coefficients lattice- $\overline{M S}$
* Some continuum renormalization coefficients for BSM operators not available in the literature.
\# Complete analysis of $\Delta B=2$ matrix elements expected from both Fermilab lattice-MILC and HPQCD collaborations in 2 years with errors $<10 \%$.

6. D_{0} mixing: $\Delta \Gamma_{D}$ and Δm_{D} calculations

\# SM short-distance description alone can not successfully describe D^{0} mixing.
\# Neither short-distance nor long-distance SM predictions can be calculated accurately.

6. D_{0} mixing: $\Delta \Gamma_{D}$ and Δm_{D} calculations

\# SM short-distance description alone can not successfully describe D^{0} mixing.
\# Neither short-distance nor long-distance SM predictions can be calculated accurately.

$$
\text { * SM Short-distance }\left(x_{D}=\Delta M_{D} / \Gamma_{D}, y_{D}=\Delta \Gamma_{D} /\left(2 \Gamma_{D}\right)\right):
$$

short - distance
\downarrow

* Contribution from b negligible ($V_{c d} V_{u b}^{*}$)
* Contribution from s is very much suppressed by powers of m_{s}^{2} / m_{c}^{2}
(B_{0} mixing is dominated by short-distance contributions with an internal top)
* subleading contributions in the OPE can be larger than leading contributions

6. D_{0} mixing: $\Delta \Gamma_{D}$ and Δm_{D} calculations

\# SM short-distance description alone can not successfully describe D^{0} mixing.
\# Neither short-distance nor long-distance SM predictions can be calculated accurately.

$$
\text { * SM Short-distance }\left(x_{D}=\Delta M_{D} / \Gamma_{D}, y_{D}=\Delta \Gamma_{D} /\left(2 \Gamma_{D}\right)\right):
$$

${ }^{c}$ * Contribution from b negligible $\left(V_{c d} V_{u b}^{*}\right)$

* Contribution from s is very much suppressed by powers of m_{s}^{2} / m_{c}^{2}
(B_{0} mixing is dominated by short-distance contributions with an internal top)
* subleading contributions in the OPE can be larger than leading contributions

$$
\text { SM short-distance } \ll \text { experiment }
$$

$$
\left(x_{D} \sim y_{D}\right)
$$

* SM Long-distance :

Long - distance

* Under some model-dependent assumptions:

```
A.F. Falk et al, Phys.Rev.D69 (2004)
```


SM Iong-distance can account for experimental result

$$
\left(x_{D} \sim y_{D}\right)
$$

* D^{0} is not light enough for its decays to be dominated by just by two-body states \rightarrow very large uncertainties.

```
SM contribution of the order of experiment
    and dominated by long-distance effects
```


What can lattice calculate?

\# Long-distance:

Current lattice techniques are inefficient for calculating non-local operators

* Straightforward approach requires a unreasonable increase of computing time to account for non-locality.

$$
\Downarrow
$$

* Need to develop new techniques to have accurate ($\sim 10 \%$ errors) results.

What can lattice calculate?

\# Short-distance: We can calculate the matrix involved in the the SM and general BSM analysis on the lattice.

* Same techniques and effective hamiltonian as for B^{0} mixing.
* This kind of studies can exclude large regions of parameters in many models, constraining BSM building.
E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, Phys.Rev.D 76 (2007)

What can lattice calculate?

\# Short-distance: We can calculate the matrix involved in the the SM and general BSM analysis on the lattice.

* Same techniques and effective hamiltonian as for B^{0} mixing.
* This kind of studies can exclude large regions of parameters in many models, constraining BSM building.
E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, Phys.Rev.D 76 (2007)
* A consistent unquenched determination of all matrix elements involved, free of the uncontrolled uncertainties associated to quenching is needed
** Latest (quenched) lattice calculation, used by E. Golowich et al:
R. Gupta et al., Phys.Rev.D55 (1997)

What can lattice calculate?

\# Short-distance: We can calculate the matrix involved in the the SM and general BSM analysis on the lattice.

* Same techniques and effective hamiltonian as for B^{0} mixing.
* This kind of studies can exclude large regions of parameters in many models, constraining BSM building.
E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, Phys.Rev.D 76 (2007)
* A consistent unquenched determination of all matrix elements involved, free of the uncontrolled uncertainties associated to quenching is needed
** Latest (quenched) lattice calculation, used by E. Golowich et al:
R. Gupta et al., Phys.Rev.D55 (1997)
* FNAL/MILC col. plans to calculate these matrix elements in the next 2 years with at least a 10% precission.

7. Summary and future work

\# Results for the B_{s}^{0} and B_{d}^{0} mixing parameters (ΔM and $\Delta \Gamma$) in the SM from both the Fermilab lattice-MILC and HPQCD are coming soon with a $5-7 \%$ error for $f_{B} \sqrt{B_{B}}$ and $2-3 \%$ error for ξ.

7. Summary and future work

\# Results for the B_{s}^{0} and B_{d}^{0} mixing parameters (ΔM and $\Delta \Gamma$) in the SM from both the Fermilab lattice-MILC and HPQCD are coming soon with a $5-7 \%$ error for $f_{B} \sqrt{B_{B}}$ and $2-3 \%$ error for ξ.
\# Same accuracy can be achieved for the matrix elements in the general $\Delta B=2$ effective hamiltonian BSM.
\rightarrow HPQCD and FNAL/MILC results with $\leq 10 \%$ accuracy in 2 years.

7. Summary and future work

\# Results for the B_{s}^{0} and B_{d}^{0} mixing parameters (ΔM and $\Delta \Gamma$) in the SM from both the Fermilab lattice-MILC and HPQCD are coming soon with a $5-7 \%$ error for $f_{B} \sqrt{B_{B}}$ and $2-3 \%$ error for ξ.
\# Same accuracy can be achieved for the matrix elements in the general $\Delta B=2$ effective hamiltonian BSM.
\rightarrow HPQCD and FNAL/MILC results with $\leq 10 \%$ accuracy in 2 years.
\# We expect a reduction of the errors by a factor of $\sim 1.5-2$ in the following years: finer lattice spacing, improved perturbation theory, more statistics, better fitting methods, improved actions ...

7. Summary and future work

\# Results for the B_{s}^{0} and B_{d}^{0} mixing parameters (ΔM and $\Delta \Gamma$) in the SM from both the Fermilab lattice-MILC and HPQCD are coming soon with a $5-7 \%$ error for $f_{B} \sqrt{B_{B}}$ and $2-3 \%$ error for ξ.
\# Same accuracy can be achieved for the matrix elements in the general $\Delta B=2$ effective hamiltonian BSM.
\rightarrow HPQCD and FNAL/MILC results with $\leq 10 \%$ accuracy in 2 years.
\# We expect a reduction of the errors by a factor of $\sim 1.5-2$ in the following years: finer lattice spacing, improved perturbation theory, more statistics, better fitting methods, improved actions ...
\# D^{0} mixing: We can not (efficiently) calculate the long-distance contributions that seems to dominate the SM predictions with current techniques.
\rightarrow Need to develop more intelligent techniques

* We can calculate short-distance contributions from general BSM extensions:
\rightarrow FNAL/MILC work planned for next year ($\leq 10 \%$ accuracy).

