# Lattice QCD meets BSM

#### Zoltan Ligeti

Lattice QCD Meets Experiment Workshop Fermilab, Dec 10–11, 2007

- Introduction
- "Straightforward" doable today?
   One stable initial/final hadron, neither fast
- "More challenging" ⇒ need new developments
   Finite width, large velocities, nonlocal matrix elements, more than one hadrons
- Conclusions



US Lattice Quantum Chromodynamics

- Approach 1: Make overconstraining SM measurements, look for inconsistencies
  - + Refining  $\epsilon_K$ ,  $\Delta m_{d,s}$ ,  $|V_{ub}|$ , etc., is an important way to look for NP
  - Processes uninteresting in the SM can be important (null obs., unrelated to UT)
  - Enhanced sensitivity in less precise measurements (e.g.,  $B \rightarrow D^{(*)} \tau \nu$ )
  - NP may yield operators absent in SM (e.g.,  $O'_7$  giving  $S_{K^*\gamma}$ )
- Approach 2: Compare specific NP model predictions with data
  - Model dependent (redo when measurements and hadronic inputs improve?)
  - What is the right set of models whose effects we are after?
- This talk: some topics missed if only aiming to improve SM measurements [O(20%) non-SM contributions to most loop-mediated transitions are still allowed]





### Not included in this talk

- Important, but maybe too far off-shell:
  - Proton decay matrix elements
  - $D^0 \overline{D}^0$  mixing parameters  $(\Delta m_D, \ \Delta \Gamma_D)$
  - Long distance contribution to  $\Delta m_K$  (part not  $\propto B_K$ )
  - Many nonleptonic decay matrix elements would make huge impact E.g., for measurement of  $\gamma$  or  $\alpha$ , etc.
- Important model building topics:
  - SUSY and SUSY breaking from the lattice
  - Conformal window in (walking) technicolor such regions and S & T in (partly) composite Higgs models, ...
- Disclaimer: may be more glory in making progress on topics skipped than covered





### New physics in $B_{d,s}$ mixing — plenty of room

Many models: (i)  $3 \times 3$  CKM matrix unitary; (ii) Tree-level decays dominated by SM



 $B_d$ : NP ~ SM still allowed; approaching  $B_s$ : LHCb will probe NP at a level NP  $\ll$  SM unless  $\sigma_d = 0 \pmod{\pi/2}$ 

comparable to  $B_d$  sector now





# Straightforward (?)

One stable hadron in initial and final states with small velocities

### **Decay constants**

• Leptonic decays:  $\Gamma(M^- \to \ell^- \bar{\nu}_\ell) = \frac{G_F^2}{8\pi} |V_{q_u q_d}|^2 f_M^2 m_M m_\ell^2 \left(1 - \frac{m_\ell^2}{m_{\pi^-}^2}\right)^2$ Need decay constants:  $ip_{\mu}f_{M} = \langle 0 | \bar{q}_{u} \gamma_{\mu}\gamma_{5} q_{d} | M(p) \rangle$ 

Charged Higgs contribution:  $(\bar{u}_L b_R)(\ell_R \nu_L)$ Using eqm:  $\langle 0 | \bar{u}\gamma_5 b | B^- \rangle = -if_B \frac{m_B^2}{\overline{m}_b + \overline{m}_m}$ • A recent SUSY favorite:  $\mathcal{B}(B_s \to \mu^+ \mu^-) \propto \tan^6 \beta + \dots$ A recent SUSY tavorite:  $\mathcal{B}(B_s \to \mu^+ \mu^-) \propto \tan^0 \beta + \dots$ ... determined by:  $\langle 0 | \bar{s}_L b_R | \bar{B}_s^0 \rangle = -i f_{B_s} \frac{m_{B_s}^2}{\overline{m}_b + \overline{m}_s}$   $\tan^2 \beta$ 

- Only case where non-SM current matrix elements need not be computed directly? (We'll come back to this for light mesons and factorization...)





### **Tree-level determination of UT:** $|V_{ub}|$

• Side opposite to  $\beta$ ; precision crucial to be sensitive to NP in  $\sin 2\beta$  via mixing Lattice appears focused (exclusively?) on exclusive  $B \to \pi \ell \bar{\nu}$  mode LQCD crucial — less constraints from heavy quark symmetry than in  $B \to D^{(*)} \ell \bar{\nu}$ 

• Exclusive: 
$$\frac{\mathrm{d}\Gamma(\overline{B}{}^{0} \to \pi^{+}\ell\bar{\nu})}{\mathrm{d}q^{2}} = \frac{G_{F}^{2}|\vec{p}_{\pi}|^{3}}{24\pi^{3}}|V_{ub}|^{2}|f_{+}(q^{2})|^{2}$$

- Lattice QCD crucial to determine  $f_+(q^2)$ under better control at large  $q^2$  (small  $|\vec{p}_{\pi}|$ )
- Continuum input: analyticity constraint on shape using a few  $f_+(q^2)$  values







### **Tree-level determination of UT:** $|V_{ub}|$

- So important, want  $|V_{ub}|$  many ways to be sure
- Inclusive: rate known to ~5%; cuts to remove  $B \to X_c \ell \bar{\nu}$ Nonperturbative *b* distribution function ("shape function") Related to  $d\Gamma(B \to X_s \gamma)/dE_{\gamma}$  — issues at next order



Weak annihilation is important uncertainty hard to quantify

$$O_{V-A} = (\bar{b}\gamma^{\mu}P_L u)(\bar{u}\gamma_{\mu}P_L b), \qquad O_{S-P} = (\bar{b}P_L u)(\bar{u}P_L b)$$

Need:  $\langle B|O_{V-A} - O_{S-P}|B \rangle = B_2 - B_1$  usual assumption:  $|B_2 - B_1| < 0.1$ 

- Any way to control cancellation? (both are 1 + small corrections)
- How strong is the suppression of  $(B_2 B_1)_{B_d}$  compared to  $(B_2 B_1)_{B_u}$ ? Also important for  $B \to X_s \ell^+ \ell^-$  (see later)





### Other ways to get $|V_{ub}|$

- $\mathcal{B}(B \to \ell \bar{\nu})$  measures  $f_B \times |V_{ub}|$  need  $f_B$  from lattice
- "Grinstein-type double ratio" inspired ideas (HQS / chiral symmetry suppressions)

$$-\frac{f_B}{f_{B_s}} \times \frac{f_{D_s}}{f_D} - \text{lattice: double ratio} = 1 \text{ within few \%} \qquad [Grinstein '93]$$

$$-\frac{f^{(B \to \rho \ell \bar{\nu})}}{f^{(B \to K^* \ell^+ \ell^-)}} \times \frac{f^{(D \to K^* \ell \bar{\nu})}}{f^{(D \to \rho \ell \bar{\nu})}} \text{ or } q^2 \text{ spectra } - \text{ accessible soon?} \qquad [ZL, Wise; Grinstein, Pirjol]$$

$$CLEO-C \ D \to \rho \ell \bar{\nu} \text{ data still consistent with no } SU(3) \text{ breaking in form factors}$$

$$Could \text{ lattice do more to pin down the corrections?}$$

$$Worth \text{ looking at similar ratio with } K, \pi - \text{ role of } B^* \text{ pole...?}$$

$$-\frac{\mathcal{B}(B \to \ell \bar{\nu})}{\mathcal{B}(B_s \to \ell^+ \ell^-)} \times \frac{\mathcal{B}(D_s \to \ell \bar{\nu})}{\mathcal{B}(D \to \ell \bar{\nu})} - \text{ very clean... after 2015?} \qquad [Ringberg workshop, '03]$$

$$-\frac{\mathcal{B}(B_u \to \ell \bar{\nu})}{\mathcal{B}(B_d \to \mu^+ \mu^-)} - \text{even cleaner... ever possible?} \qquad [Grinstein, CKM'06]$$





### $B ightarrow D^{(*)} au ar{ u}$ : massive leptons

$$\mathcal{B}(B \to D^* \tau \bar{\nu}) = \begin{cases} (2.02^{+0.40}_{-0.37} \pm 0.37)\% & \text{[Belle, arXiv:0706.4429]} \\ (1.62 \pm 0.31 \pm 0.10 \pm 0.05)\% & \text{[BaBar arXiv:0709.1698]} \\ \mathcal{B}(B \to D \tau \bar{\nu}) = (0.86 \pm 0.24 \pm 0.11 \pm 0.06)\% & \text{[BaBar arXiv:0709.1698]} \end{cases}$$

For each decay, there is a form factor  $\propto q_{\mu}$  which does not contribute for  $\ell=e,\,\mu$ 

- HQS ⇒ relations between all form factors
   Much smaller efficiency due to τ's ⇒ want to use full rate, not just zero recoil limit
  - Lattice: want as much info on form factors as possible, besides w = 1, slope ( $w_{max} = 1.43$ ) (I would not directly simulate non-SM currents)
- Obvious need to recast analyticity constraints for  $B \rightarrow D \tau \bar{\nu}$  rate (both form factors)





Sensitive to  $\tan\beta/m_{H^\pm}\gtrsim 0.1$  or less







### Bag parameters: $\Delta m_B$ , $\Delta \Gamma_B$ , $A^{s,d}_{ m SL}$ , lifetimes

- $|M_{12}|$  is short distance dominated; OPE for  $|\Gamma_{12}|$ ,  $Im(\Gamma_{12}/M_{12})$ , and lifetimes
- $\Delta m_B$ : need  $\langle \overline{B} | (\overline{b}d)_{V-A} (\overline{b}d)_{V-A} | B \rangle = \frac{8}{3} m_B^2 f_B^2 B_B$

Recently: SUSY at large  $\tan\beta$ : suppression of  $\Delta m_s \propto \tan^4\beta$ 

• In general, many operators: [Buras, Jager, Urban hep-ph/0102316] [Becirevic *et al.*, hep-lat/0110091]

$$\begin{array}{rcl}
O_{1} &=& \bar{b}^{i} \gamma_{\mu} (1 - \gamma_{5}) q^{i} \bar{b}^{j} \gamma_{\mu} (1 - \gamma_{5}) q^{j} ,\\
O_{2} &=& \bar{b}^{i} (1 - \gamma_{5}) q^{i} \bar{b}^{j} (1 - \gamma_{5}) q^{j} ,\\
O_{3} &=& \bar{b}^{i} (1 - \gamma_{5}) q^{j} \bar{b}^{j} (1 - \gamma_{5}) q^{i} ,\\
O_{4} &=& \bar{b}^{i} (1 - \gamma_{5}) q^{i} \bar{b}^{j} (1 + \gamma_{5}) q^{j} ,\\
O_{5} &=& \bar{b}^{i} (1 - \gamma_{5}) q^{j} \bar{b}^{j} (1 + \gamma_{5}) q^{i} ,\\
\end{array}$$

- $\Delta\Gamma$  &  $A_{SL}$ : In addition to  $B_B$ , need  $\langle \overline{B} | (\overline{b}d)_{S-P} (\overline{b}d)_{S-P} | B \rangle = -\frac{5}{3} m_B^2 \frac{m_B^2}{(m_b + m_d)^2} f_B^2 B_S$ At order 1/m, additional operators involving  $\overleftarrow{D}_{\alpha} D^{\alpha}$  [Beneke, Buchalla, Dunietz, hep-ph/9605259] Not sure if any groups tried to compute them — vacuum saturation is used
- Lifetimes: same theory as  $\Delta \Gamma_B \& A^{s,d}_{SL}$ , except  $\langle B | \dots | B \rangle$  vs.  $\langle \overline{B} | \dots | B \rangle$   $(\tau_{\Lambda_b} ?)$





### CPV in $B_s$ mixing: correlation of $S_{\psi\phi}$ and $A^s_{ m SL}$

In SM:  $A_{SL}^s \sim 3 \times 10^{-5}$  is not observable  $\frac{\Gamma[\overline{B}^0(t) \to \ell^+ X] - \Gamma[B^0(t) \to \ell^- X]}{\Gamma[\overline{B}^0(t) \to \ell^+ X] + \Gamma[B^0(t) \to \ell^- X]} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$  If large NP in  $B_s$  mixing  $\Rightarrow A_{SL}^s$  and  $S_{\psi\phi}$ are strongly correlated [ZL, Papucci, Perez]





 $-|A_{\rm SL}^s| > |A_{\rm SL}^d|$  possible (unlike SM)

h,

Lattice can help reduce uncertainties





-0.005

-0.01

2.5

## Getting tougher...

Hadrons with non-negligible widths ( $\rho$ ,  $K^*$ )

Heavy-to-light at small  $q^2$ 

### $B ightarrow ho \gamma$ and $K^* \gamma$

• First not fully hadronic FCNC  $b \rightarrow d$  decay ( $B^0$  ratio cleaner than  $B^{\pm}$ ):

$$\frac{\Gamma(B^+ \to \rho^+ \gamma) + 2\Gamma(B^0 \to \rho^0 \gamma)}{\Gamma(B^+ \to K^{*+} \gamma) + \Gamma(B^0 \to K^{*0} \gamma)} = \left|\frac{V_{td}}{V_{ts}}\right|^2 \frac{1}{\xi_{\gamma}^2} = (2.96 \pm 0.57)\% \quad \text{(exp)}$$

In SM just another way to get  $|V_{td}/V_{ts}|$ ; different sensitivity to NP than  $\Delta m_d/\Delta m_s$ 

Sizable uncertainties: using  $\xi_{\gamma} = 1.2 \pm 0.2$  (made up...)  $\Rightarrow |V_{td}/V_{ts}| = 0.21 \pm 0.04$  ... sometimes smaller errors are quoted from QCD sum rules

- Can LQCD address some of the uncertainties?
  - SU(3)-breaking in form factors at  $q^2 = 0$ ?
  - How about annihilation? (Saw in inclusive: OPE, given by local matrix elements) Would need matrix elements of the form:  $\langle \rho \gamma | T\{[(\bar{b}u)(\bar{u}d)] J_{em}\} | B_{u,d} \rangle$





### $B ightarrow K^{(*)} \ell^+ \ell^-$ and $X_s \ell^+ \ell^-$

• Sensitive besides  $O_7$  to  $O_9 = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell)$  and  $O_{10} = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell)$  $H_{\text{eff}}$  and inclusive rate calculated to NNLO [Many authors: Bobeth, Misiak, Urban, Munz, Gambino, Gorbahn, Haisch, Asatryan, Asatrian, Bieri, Hovhannisyan, Greub, Walker, Ghinculov, Hurth, Isidori, Yao, etc.]

• At LHCb, exclusive  $B \to K^{(*)}\ell^+\ell^-$ ,  $\pi\ell^+\ell^-$ ,  $\rho\ell^+\ell^-$  may give best sensitivity... if form factors are known precisely enough

Inclusive: high precision only if ∃ super-b
 Not inconceivable that large q<sup>2</sup> region is measurable at LHCb semi-inclusively

• Large  $q^2$ : rate becomes precise by taking ratio with  $B \rightarrow X_u \ell \bar{\nu}$ ; weak annihilation ( $B_s$  vs.  $B_u$  matrix element) may become a dominant uncertainty [ZL & Tackmann, arXiv:0707.1694]





### Left vs. right

• SM:  $O_7 = \bar{s} \, \sigma_{\mu\nu} F^{\mu\nu} (\overline{m}_b P_R + \overline{m}_s P_L) \, b$  NP:  $O_7' = \bar{s} \, \sigma_{\mu\nu} F^{\mu\nu} (\overline{m}_b P_L + \overline{m}_s P_R) \, b$ 

With  $O_7$  only, photon must be left-handed to conserve  $J_z$  along decay axis

Inclusive  $B \to X_s \gamma$   $\overbrace{\gamma \qquad b \qquad s}{}$ 

Assumption: 2-body decay Does not apply for  $b \rightarrow s\gamma g$ 

**Exclusive**  $B \to K^* \gamma$ 



... quark model ( $s_L$  implies  $J_z^{K^*} = -1$ ) ... higher  $K^*$  Fock states

[Atwood, Gronau, Soni; Grinstein, Grossman, ZL, Pirjol]

 $S_{K*\gamma} = -2 \left( \overline{m}_s / \overline{m}_b + C_7' / C_7 \right) \sin 2\beta + \mathcal{O}(\Lambda_{\rm QCD} / m_b) = -0.19 \pm 0.23$  (exp)





### Left vs. right

• SM:  $O_7 = \bar{s} \, \sigma_{\mu\nu} F^{\mu\nu} (\overline{m}_b P_R + \overline{m}_s P_L) \, b$  NP:  $O_7' = \bar{s} \, \sigma_{\mu\nu} F^{\mu\nu} (\overline{m}_b P_L + \overline{m}_s P_R) \, b$ 

With  $O_7$  only, photon must be left-handed to conserve  $J_z$  along decay axis

Inclusive  $B \to X_s \gamma$ 

Assumption: 2-body decay Does not apply for  $b \rightarrow s\gamma g$ 

**Exclusive**  $B \to K^* \gamma$ 



... quark model ( $s_L$  implies  $J_z^{K^*} = -1$ ) ... higher  $K^*$  Fock states

[Atwood, Gronau, Soni; Grinstein, Grossman, ZL, Pirjol]

 $S_{K*\gamma} = -2 \left( \overline{m}_s / \overline{m}_b + C_7' / C_7 \right) \sin 2\beta + \mathcal{O}(\Lambda_{\rm QCD} / m_b) = -0.19 \pm 0.23$  (exp)

Now... what does this have to do with LQCD...?





### Left vs. right

• SM:  $O_7 = \bar{s} \, \sigma_{\mu\nu} F^{\mu\nu} (\overline{m}_b P_R + \overline{m}_s P_L) \, b$  NP:  $O_7' = \bar{s} \, \sigma_{\mu\nu} F^{\mu\nu} (\overline{m}_b P_L + \overline{m}_s P_R) \, b$ 

With  $O_7$  only, photon must be left-handed to conserve  $J_z$  along decay axis

Inclusive  $B \to X_s \gamma$ 

Assumption: 2-body decay Does not apply for  $b \rightarrow s\gamma g$ 

**Exclusive**  $B \to K^* \gamma$ 



... quark model ( $s_L$  implies  $J_z^{K^*} = -1$ ) ... higher  $K^*$  Fock states

[Atwood, Gronau, Soni; Grinstein, Grossman, ZL, Pirjol]

$$S_{K*\gamma} = -2 \left( \overline{m}_s / \overline{m}_b + C_7' / C_7 \right) \sin 2\beta + \mathcal{O}(\Lambda_{\rm QCD} / m_b) = -0.19 \pm 0.23$$
 (exp)

Now... what does this have to do with LQCD...?

• At LHCb  $S_{K*\gamma}$  impossible  $\Rightarrow$  study  $B \rightarrow K^* \ell^+ \ell^-$  angular distributions ( $K \ell^+ \ell^-$  no good) at small  $q^2$  — precise form factors are necessary for good sensitivity





### Nonleptonic decays

- SCET provides an effective theory framework to analyze many decays of interest More work & data needed to understand the expansions Why some predictions work at  $\lesssim 10\%$  level, while others receive  $\gtrsim 30\%$  corrections
- LQCD can help even without addressing hardest questions:
  - Light quark masses: "chirally (non-)enhanced"  ${\cal O}(\Lambda_{
    m QCD}/m_b)$  terms

$$\langle 0 | \, \bar{u}\gamma_5 d \, | \pi^- \rangle = -if_\pi \, \frac{m_\pi^2}{\overline{m}_d + \overline{m}_u} \quad \text{or try} \quad \frac{\langle 0 | \, \bar{u}\gamma_\mu\gamma_5 d \, | \pi^- \rangle}{\langle 0 | \, \bar{u}\gamma_5 d \, | \pi^- \rangle} = -\frac{p_\mu}{f_\pi} \, \frac{\overline{m}_d + \overline{m}_u}{m_\pi^2} \,$$

- Semileptonic form factors (precision, include  $\rho$  and  $K^*$ , larger recoil)
- Light cone distribution functions of heavy and light mesons
- SU(3) breaking in form factors and distribution functions
- Moments, e.g., SCET can accomodate  $\mathcal{B}(B \to \pi^0 \pi^0)$  via  $\langle k_+^{-1} \rangle_B = \int \frac{\mathrm{d}k_+}{k_+} \phi_B(k_+)$





### **Final comments**

#### Need sensible averages (e.g., PDG CKM review)

• Need to be conservative: what are the uncertainties such that if predictions and data disagree by  $5(3)\sigma$  statistical errors, people would believe it's new physics?

Need systematic and statistical uncertainties separately

"I'll believe a 3% lattice theory error when the lattice has produced one successful prediction and several 3% postdictions" (Ben Grinstein, CKM 2006 plenary)

• Particularly important at present:

 $\begin{aligned} |V_{us}|: \ f^{K \to \pi}, \ f_K / f_{\pi} \\ |V_{cs}|, \ |V_{cd}|: \ f_{D_{(s)}}, \ f^{D \to K, \pi} \\ |V_{td}|, \ |V_{ts}|: \ f^2_{B_{(s)}} B_{B_{(s)}} \text{ and } \xi \\ \epsilon_K: \ \hat{B}_K, \ |V_{ub}|: \ f^{B \to \pi}, \text{ etc.} \end{aligned}$ 

Reasonable combination  $f_K/f_{\pi} = 1.198(10) \Big|_{\text{Juttner}}^{\text{Lattice}'07}$ 

Scenarios:





### Need sensible averages (e.g., PDG CKM review)

- Need to be conservative: what are the uncertainties such that if predictions and data disagree by  $5(3)\sigma$  statistical errors, people would believe it's new physics?
  - Need systematic and statistical uncertainties separately

"I'll believe a 3% lattice theory error when the lattice has produced one successful prediction and several 3% postdictions" (Ben Grinstein, CKM 2006 plenary)

- Particularly important at present:
  - $$\begin{split} |V_{us}|: \ f^{K \to \pi}, \ f_K / f_{\pi} \\ |V_{cs}|, \ |V_{cd}|: \ f_{D_{(s)}}, \ f^{D \to K, \pi} \\ |V_{td}|, \ |V_{ts}|: \ f^2_{B_{(s)}} B_{B_{(s)}} \ \text{and} \ \xi \\ \epsilon_K: \ \hat{B}_K, \ |V_{ub}|: \ f^{B \to \pi}, \ \text{etc.} \end{split}$$



arXiv:0712.1175 today:  $f_{D_s} = (274 \pm 10 \pm 5)$  MeV vs. 241(3) MeV?

If experts cannot agree, it's unlikely the rest of the community would believe a claim of new physics (same for measurements using continuum methods)





# Summary

- The SM flavor sector has been tested with impressive & increasing precision KM phase is the dominant source of *CP* violation in flavor changing processes
- Deviations from SM in  $B_{d,s}$  mixing,  $b \to s$  and even  $b \to d$  decays are constrained NP in loops not yet bound to be  $\ll$  SM contribution (sensitive to scales  $\gg$  LHC)
- The non-observation of NP at  $E_{\rm exp} \sim m_B$  is a problem for NP at  $\Lambda_{\rm NP} \sim {\rm TeV}$
- Tests of 3-2 generation transitions will approach precision of 3-1, approaching 2-1 Many important matrix elements, SU(3) & HQS breaking, often useful separately
- If NP seen at LHC, flavor may provide important clues to model building
   If NP is seen in flavor sector: study it in as many different operators as possible
   If NP is not seen in flavor sector: achieve what is theoretically possible
   In either case, LQCD will play important roles







# **Backup slides**

Identities, neglecting CPV in mixing (not too important, surprisingly poorly known)

K: long-lived = CP-odd = heavy

D: long-lived = CP-odd  $(3.5\sigma)$  = light  $(2\sigma)$ 

 $B_s$ : long-lived = CP-odd  $(1.5\sigma)$  = heavy in the SM

 $B_d$ : yet unknown, same as  $B_s$  in SM for  $m_b \gg \Lambda_{
m QCD}$ 

Before 2006, we only knew experimentally the kaon line above

• We have learned a lot about meson mixings — good consistency with SM

|       | $x = \Delta m / \Gamma$      |         | $y = \Delta \Gamma / (2\Gamma)$ |                            | $A = 1 -  q/p ^2$        |                             |
|-------|------------------------------|---------|---------------------------------|----------------------------|--------------------------|-----------------------------|
|       | SM theory                    | data    | SM theory                       | data                       | SM theory                | data                        |
| $B_d$ | $\mathcal{O}(1)$             | 0.78    | $y_s  V_{td}/V_{ts} ^2$         | $-0.005 \pm 0.019$         | $-(5.5\pm1.5)10^{-4}$    | $(-4.7 \pm 4.6)10^{-3}$     |
| $B_s$ | $ x_d   V_{ts} / V_{td}  ^2$ | 25.8    | $\mathcal{O}(-0.1)$             | $-0.05\pm0.04$             | $-A_d  V_{td}/V_{ts} ^2$ | $(0.3 \pm 9.3) 10^{-3}$     |
| K     | $\mathcal{O}(1)$             | 0.948   | -1                              | -0.998                     | $4\mathrm{Re}\epsilon$   | $(6.6 \pm 1.6) 10^{-3}$     |
| D     | < 0.01                       | < 0.016 | $\mathcal{O}(0.01)$             | $y_{CP} = 0.011 \pm 0.003$ | $< 10^{-4}$              | $\mathcal{O}(1)$ bound only |



### Parameterization of NP in mixing

• Assume: (i)  $3 \times 3$  CKM matrix is unitary; (ii) Tree-level decays dominated by SM NP in mixing — two new param's for each neutral meson:

$$M_{12} = \underbrace{M_{12}^{\text{SM}} r_q^2 e^{2i\theta_q}}_{\text{easy to relate to data}} \equiv \underbrace{M_{12}^{\text{SM}} (1 + h_q e^{2i\sigma_q})}_{\text{easy to relate to models}}$$

• Observables sensitive to  $\Delta F = 2$  new physics:

$$\begin{split} \Delta m_{Bq} &= r_q^2 \,\Delta m_{Bq}^{\rm SM} = |1 + h_q e^{2i\sigma_q} |\Delta m_q^{\rm SM} \\ S_{\psi K} &= \sin(2\beta + 2\theta_d) = \sin[2\beta + \arg(1 + h_d e^{2i\sigma_d})] \\ S_{\rho\rho} &= \sin(2\alpha - 2\theta_d) \\ S_{B_s \to \psi \phi} &= \sin(2\beta_s - 2\theta_s) = \sin[2\beta_s - \arg(1 + h_s e^{2i\sigma_s})] \\ A_{\rm SL}^q &= {\rm Im}\left(\frac{\Gamma_{12}^q}{M_{12}^q r_q^2 e^{2i\theta_q}}\right) = {\rm Im}\left[\frac{\Gamma_{12}^q}{M_{12}^q (1 + h_q e^{2i\sigma_q})}\right] \\ \Delta \Gamma_s^{CP} &= \Delta \Gamma_s^{\rm SM} \cos^2(2\theta_s) = \Delta \Gamma_s^{\rm SM} \cos^2[\arg(1 + h_s e^{2i\sigma_s})] \end{split}$$

• Tree-level constraints unaffected:  $|V_{ub}/V_{cb}|$  and  $\gamma$  (or  $\pi - \beta - \alpha$ )





## Next milestone in $B_s$ : $S_{B_s o \psi \phi, \, \psi \eta^{(\prime)}}$

- $S_{\psi\phi}$  (sin  $2\beta_s$  for CP-even) analog of  $S_{\psi K}$ CKM fit predicts: sin  $2\beta_s = 0.0368^{+0.0017}_{-0.0018}$
- 2000: Is  $\sin 2\beta$  consistent with  $\epsilon_K$ ,  $|V_{ub}|$  $\Delta m_B$  and other constraints? 2009: Is  $\sin 2\beta_s$  consistent with ...?

Plot  $S_{\psi\phi} =$ SM value  $\pm 0.10 / \pm 0.03$  $0.1/1 \text{ yr of nominal LHCb data} \Rightarrow$ 

- With modest data sets, huge impact on our understanding; one of the most interesting early measurements
- Many important LHCb measurements





### Minimal flavor violation (MFV)

- How strongly can effects of NP at scale  $\Lambda_{NP}$  be (sensibly) suppressed?
- SM global flavor symmetry  $U(3)_Q \times U(3)_u \times U(3)_d$  broken by nonzero Yukawa's

$$\mathcal{L}_Y = -Y_u^{ij} \,\overline{Q_{Li}^I} \,\widetilde{\phi} \, u_{Rj}^I - Y_d^{ij} \,\overline{Q_{Li}^I} \,\phi \, d_{Rj}^I \qquad \qquad \widetilde{\phi} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \phi^*$$

- MFV: Assume Y's are the only source of flavor and CP violation (cannot demand all higher dimension operators to be flavor invariant and contain only SM fields) [Chivukula & Georgi '87; Hall & Randall '90; D'Ambrosio, Giudice, Isidori, Strumia '02]
- CKM and GIM ( $m_q$ ) suppressions similar to SM; allows EFT-like analyses Sizable corrections possible to some observables, even imposing MFV:  $B \rightarrow X_s \gamma, \ B \rightarrow \tau \nu, \ B_s \rightarrow \mu^+ \mu^-, \ \Delta m_{B_s}, \ \Omega h^2, \ g - 2$ , precision electroweak
- In some scenarios high- $p_T$  LHC data may rule out MFV or make it more plausible





#### Many interesting rare B decays

#### Important probes of new physics

 $-B \rightarrow K^* \gamma$  or  $X_s \gamma$ : Best  $m_{H^{\pm}}$  limits in 2HDM — in SUSY many param's

 $-B \rightarrow K^{(*)}\ell^+\ell^-$  or  $X_s\ell^+\ell^-$ : bsZ penguins, SUSY, right handed couplings

| $(c - c \circ \mu)$     |                     |                           |  |  |  |  |
|-------------------------|---------------------|---------------------------|--|--|--|--|
| Decay                   | $\sim$ SM rate      | physics examples          |  |  |  |  |
| $B 	o s\gamma$          | $3 \times 10^{-4}$  | $ V_{ts} , H^{\pm}, SUSY$ |  |  |  |  |
| $B \to \tau \nu$        | $1 \times 10^{-4}$  | $f_B V_{ub} $ , $H^\pm$   |  |  |  |  |
| $B \to s \nu \nu$       | $4 \times 10^{-5}$  | new physics               |  |  |  |  |
| $B \to s \ell^+ \ell^-$ | $5 \times 10^{-6}$  | new physics               |  |  |  |  |
| $B_s \to \tau^+ \tau^-$ | $1 \times 10^{-6}$  |                           |  |  |  |  |
| $B \to s \tau^+ \tau^-$ | $5 \times 10^{-7}$  | :                         |  |  |  |  |
| $B  ightarrow \mu  u$   | $5 \times 10^{-7}$  |                           |  |  |  |  |
| $B_s \to \mu^+ \mu^-$   | $4 \times 10^{-9}$  |                           |  |  |  |  |
| $B \to \mu^+ \mu^-$     | $2 \times 10^{-10}$ |                           |  |  |  |  |
|                         |                     |                           |  |  |  |  |

A crude guide  $(\ell = e \text{ or } \mu)$ 

Replacing  $b \rightarrow s$  by  $b \rightarrow d$  costs a factor  $\sim 20$  (in SM); interesting to test in both: rates, *CP* asymmetries, etc.

In  $B \rightarrow q l_1 l_2$  decays expect 10–20%  $K^*/\rho$ , and 5–10%  $K/\pi$  (model dept)

LHC:  $B \to K^* \ell^+ \ell^-$  and  $B_s \to \mu^+ \mu^-$ Inclusive modes impossible





 $\Lambda_b$  and  $B_s$  decays

#### • CDF measured in 2003: $\Gamma(\Lambda_b \to \Lambda_c^+ \pi^-) / \Gamma(\overline{B}{}^0 \to D^+ \pi^-) \approx 2$



Factorization does not follow from large  $N_c$ , but holds at leading order in  $\Lambda_{\rm QCD}/Q$  $\frac{\Gamma(\Lambda_b \to \Lambda_c \pi^-)}{\Gamma(\overline{B}{}^0 \to D^{(*)+}\pi^-)} \simeq 1.8 \left(\frac{\zeta(w_{\rm max}^{\Lambda})}{\xi(w_{\rm max}^{D^{(*)}})}\right)^2$  [Leibovich, ZL, Stewart, Wise] Isour-Wise functions may be expected to be comparable

Isgur-Wise functions may be expected to be comparable Lattice could nail this

•  $B_s \rightarrow D_s \pi$  is pure tree, can help to determine relative size of E vs. C

[CDF '03:  $\mathcal{B}(B_s \to D_s^- \pi^+) / \mathcal{B}(B^0 \to D^- \pi^+) \simeq 1.35 \pm 0.43$  (using  $f_s / f_d = 0.26 \pm 0.03$ )]

Lattice could help: Factorization relates tree amplitudes, need SU(3) breaking in  $B_s \rightarrow D_s \ell \bar{\nu}$  vs.  $B \rightarrow D \ell \bar{\nu}$  form factors from exp. or lattice



