Lattice QCD meets BSM

Zoltan Ligeti

Lattice QCD Meets Experiment Workshop Fermilab, Dec 10-11, 2007

- Introduction
- "Straightforward" - doable today?

One stable initial/final hadron, neither fast

- "More challenging" \Rightarrow need new developments

Finite width, large velocities, nonlocal matrix elements, more than one hadrons

- Conclusions

US Lattice Quantum Chromodynamics

How to look for new physics?

- Approach 1: Make overconstraining SM measurements, look for inconsistencies
+ Refining $\epsilon_{K}, \Delta m_{d, s},\left|V_{u b}\right|$, etc., is an important way to look for NP
- Processes uninteresting in the SM can be important (null obs., unrelated to UT)
- Enhanced sensitivity in less precise measurements (e.g., $B \rightarrow D^{(*)} \tau \nu$)
- NP may yield operators absent in SM (e.g., O_{7}^{\prime} giving $S_{K^{*} \gamma}$)
- Approach 2: Compare specific NP model predictions with data
- Model dependent (redo when measurements and hadronic inputs improve?)
- What is the right set of models whose effects we are after?
- This talk: some topics missed if only aiming to improve SM measurements [$\mathcal{O}(20 \%)$ non-SM contributions to most loop-mediated transitions are still allowed]

Not included in this talk

- Important, but maybe too far off-shell:
- Proton decay matrix elements
- $D^{0}-\bar{D}^{0}$ mixing parameters $\left(\Delta m_{D}, \Delta \Gamma_{D}\right)$
- Long distance contribution to Δm_{K} (part not $\propto B_{K}$)
- Many nonleptonic decay matrix elements would make huge impact E.g., for measurement of γ or α, etc.
- Important model building topics:
- SUSY and SUSY breaking from the lattice
- Conformal window in (walking) technicolor such regions and S \& T in (partly) composite Higgs models, ...
- Disclaimer: may be more glory in making progress on topics skipped than covered

New physics in $B_{d, s}$ mixing - plenty of room

- Many models: (i) 3×3 CKM matrix unitary; (ii) Tree-level decays dominated by SM

B_{d} : NP ~ SM still allowed; approaching $\mathrm{NP} \ll \mathrm{SM}$ unless $\sigma_{d}=0(\bmod \pi / 2)$
B_{s} : LHCb will probe NP at a level comparable to B_{d} sector now

Straightforward (?)

One stable hadron in initial and final states with small velocities

Decay constants

- Leptonic decays: $\Gamma\left(M^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}\right)=\frac{G_{F}^{2}}{8 \pi}\left|V_{q_{u} q_{d}}\right|^{2} f_{M}^{2} m_{M} m_{\ell}^{2}\left(1-\frac{m_{\ell}^{2}}{m_{M}^{2}}\right)^{2}$

Need decay constants: $i p_{\mu} f_{M}=\langle 0| \bar{q}_{u} \gamma_{\mu} \gamma_{5} q_{d}|M(p)\rangle$

- Charged Higgs contribution: $\left(\bar{u}_{L} b_{R}\right)\left(\bar{\ell}_{R} \nu_{L}\right)$

Using eqm: $\langle 0| \bar{u} \gamma_{5} b\left|B^{-}\right\rangle=-i f_{B} \frac{m_{B}^{2}}{\bar{m}_{b}+\bar{m}_{u}}$

- A recent SUSY favorite: $\mathcal{B}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right) \propto \tan ^{6} \beta+\ldots$
\ldots determined by: $\langle 0| \bar{s}_{L} b_{R}\left|\bar{B}_{s}^{0}\right\rangle=-i f_{B_{s}} \frac{m_{B_{s}}^{2}}{\bar{m}_{b}+\bar{m}_{s}}$

- Only case where non-SM current matrix elements need not be computed directly? (We'll come back to this for light mesons and factorization...)

Tree-level determination of UT: $\left|V_{u b}\right|$

- Side opposite to β; precision crucial to be sensitive to NP in $\sin 2 \beta$ via mixing

Lattice appears focused (exclusively?) on exclusive $B \rightarrow \pi \ell \bar{\nu}$ mode
LQCD crucial - less constraints from heavy quark symmetry than in $B \rightarrow D^{(*)} \ell \bar{\nu}$

- Exclusive: $\frac{\mathrm{d} \Gamma\left(\bar{B}^{0} \rightarrow \pi^{+} \ell \bar{\nu}\right)}{\mathrm{d} q^{2}}=\frac{G_{F}^{2}\left|\vec{r}_{\pi}\right|^{3}}{24 \pi^{3}}\left|V_{u b}\right|^{2}\left|f_{+}\left(q^{2}\right)\right|^{2}$
- Lattice QCD crucial to determine $f_{+}\left(q^{2}\right)$ under better control at large q^{2} (small $\left|\vec{p}_{\pi}\right|$)
- Continuum input: analyticity constraint on shape using a few $f_{+}\left(q^{2}\right)$ values

Tree-level determination of UT: $\left|V_{u b}\right|$

- So important, want $\left|V_{u b}\right|$ many ways to be sure
- Inclusive: rate known to $\sim 5 \%$; cuts to remove $B \rightarrow X_{c} \ell \bar{\nu}$ 岁 Nonperturbative b distribution function ("shape function") Related to $\mathrm{d} \Gamma\left(B \rightarrow X_{s} \gamma\right) / \mathrm{d} E_{\gamma}$ - issues at next order

- Weak annihilation is important uncertainty hard to quantify

$$
O_{V-A}=\left(\bar{b} \gamma^{\mu} P_{L} u\right)\left(\bar{u} \gamma_{\mu} P_{L} b\right), \quad O_{S-P}=\left(\bar{b} P_{L} u\right)\left(\bar{u} P_{L} b\right)
$$

Need: $\langle B| O_{V-A}-O_{S-P}|B\rangle=B_{2}-B_{1} \quad$ usual assumption: $\left|B_{2}-B_{1}\right|<0.1$

- Any way to control cancellation? (both are $1+$ small corrections)
- How strong is the suppression of $\left(B_{2}-B_{1}\right)_{B_{d}}$ compared to $\left(B_{2}-B_{1}\right)_{B_{u}}$?

Also important for $B \rightarrow X_{s} \ell^{+} \ell^{-}$(see later)

Other ways to get $\left|V_{u b}\right|$

- $\mathcal{B}(B \rightarrow \ell \bar{\nu})$ measures $f_{B} \times\left|V_{u b}\right|$ - need f_{B} from lattice
- "Grinstein-type double ratio" inspired ideas (HQS / chiral symmetry suppressions)
$-\frac{f_{B}}{f_{B_{s}}} \times \frac{f_{D_{s}}}{f_{D}}$ - lattice: double ratio $=1$ within few $\%$
$-\frac{f^{(B \rightarrow \rho \ell \bar{\nu})}}{f^{\left(B \rightarrow K^{*} \ell+\ell^{-}\right)}} \times \frac{f^{\left(D \rightarrow K^{*} \ell \bar{\nu}\right)}}{f^{(D \rightarrow \rho \ell \bar{\nu})}}$ or q^{2} spectra - accessible soon? [ZL, Wise; Grinstein, Piriol] CLEO-C $D \rightarrow \rho \ell \bar{\nu}$ data still consistent with no $S U(3)$ breaking in form factors

Could lattice do more to pin down the corrections?
Worth looking at similar ratio with K, π - role of B^{*} pole...?
$-\frac{\mathcal{B}(B \rightarrow \ell \bar{\nu})}{\mathcal{B}\left(B_{s} \rightarrow \ell^{+} \ell^{-}\right)} \times \frac{\mathcal{B}\left(D_{s} \rightarrow \ell \bar{\nu}\right)}{\mathcal{B}(D \rightarrow \ell \bar{\nu})}$ - very clean \ldots after 2015?
$-\frac{\mathcal{B}\left(B_{u} \rightarrow \ell \bar{\nu}\right)}{\mathcal{B}\left(B_{d} \rightarrow \mu^{+} \mu^{-}\right)}$- even cleaner... ever possible?

$B \rightarrow D^{(*)} \tau \bar{\nu}:$ massive leptons

$\mathcal{B}\left(B \rightarrow D^{*} \tau \bar{\nu}\right)= \begin{cases}\left(2.02_{-0.37}^{+0.40} \pm 0.37\right) \% & \text { [Belle, arXiv:0706.4429] } \\ (1.62 \pm 0.31 \pm 0.10 \pm 0.05) \% & \text { [BaBar arXiv:0709.1698] }\end{cases}$
$\mathcal{B}(B \rightarrow D \tau \bar{\nu})=(0.86 \pm 0.24 \pm 0.11 \pm 0.06) \% \quad$ [BaBar arXiv:0709.1698]
For each decay, there is a form factor $\propto q_{\mu}$ which does not contribute for $\ell=e, \mu$

- $\mathrm{HQS} \Rightarrow$ relations between all form factors

Much smaller efficiency due to τ 's \Rightarrow want to use full rate, not just zero recoil limit

Lattice: want as much info on form factors as possible, besides $w=1$, slope ($w_{\max }=1.43$) (I would not directly simulate non-SM currents)

- Obvious need to recast analyticity constraints for $B \rightarrow D \tau \bar{\nu}$ rate (both form factors)
$H^{ \pm}$does not contribute to transverse D^{*}, so $D \tau \nu$ more sensitive

Sensitive to $\tan \beta / m_{H^{ \pm}} \gtrsim 0.1$ or less

Bag parameters: $\Delta m_{B}, \Delta \Gamma_{B}, A_{\text {SL }}^{s, d}$, lifetimes

- $\left|M_{12}\right|$ is short distance dominated; OPE for $\left|\Gamma_{12}\right|, \operatorname{Im}\left(\Gamma_{12} / M_{12}\right)$, and lifetimes
- Δm_{B} : need $\langle\bar{B}|(\bar{b} d)_{V-A}(\bar{b} d)_{V-A}|B\rangle=\frac{8}{3} m_{B}^{2} f_{B}^{2} B_{B}$

Recently: SUSY at large $\tan \beta$: suppression of $\Delta m_{s} \propto \tan ^{4} \beta$

- In general, many operators:
[Buras, Jager, Urban hep-ph/0102316]
[Becirevic et al., hep-lat/0110091]

$$
\begin{aligned}
& O_{1}=\bar{b}^{i} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{i} \bar{b}^{j} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{j}, \\
& O_{2}=\bar{b}^{i}\left(1-\gamma_{5}\right) q^{i} \bar{b}^{j}\left(1-\gamma_{5}\right) q^{j}, \\
& O_{3}=\bar{b}^{i}\left(1-\gamma_{5}\right) q^{i} \bar{b}^{j}\left(1-\gamma_{5}\right) q^{i}, \\
& O_{4}=\bar{b}^{i}\left(1-\gamma_{5}\right) q^{i} i^{j}\left(1+\gamma_{5}\right) q^{j}, \\
& O_{5}=\bar{b}^{i}\left(1-\gamma_{5}\right) q^{j} \bar{b}^{j}\left(1+\gamma_{5}\right) q^{i},
\end{aligned}
$$

- $\Delta \Gamma \& A_{\mathrm{SL}}$: In addition to B_{B}, need $\langle\bar{B}|(\bar{b} d)_{S-P}(\bar{b} d)_{S-P}|B\rangle=-\frac{5}{3} m_{B}^{2} \frac{m_{B}^{2}}{\left(m_{b}+m_{d}\right)^{2}} f_{B}^{2} B_{S}$ At order $1 / m$, additional operators involving $\overleftarrow{D}_{\alpha} D^{\alpha} \quad$ [Beneke, Buchalla, Dunietz, hep-ph/9605259]

Not sure if any groups tried to compute them - vacuum saturation is used

- Lifetimes: same theory as $\Delta \Gamma_{B} \& A_{\mathrm{SL}}^{s, d}$, except $\langle B| \ldots|B\rangle$ vs. $\langle\bar{B}| \ldots|B\rangle \quad\left(\tau_{\Lambda_{b}}\right.$?)

CPV in B_{s} mixing: correlation of $S_{\psi \phi}$ and A_{SL}^{s}

- In SM: $A_{\mathrm{SL}}^{s} \sim 3 \times 10^{-5}$ is not observable $\frac{\Gamma\left[\bar{B}^{0}(t) \rightarrow \ell^{+} X\right]-\Gamma\left[B^{0}(t) \rightarrow \ell^{-} X\right]}{\Gamma\left[\bar{B}^{0}(t) \rightarrow \ell^{+} X\right]+\Gamma\left[B^{0}(t) \rightarrow \ell^{-} X\right]}=\frac{1-|q / p|^{4}}{1+|q / p|^{4}}$

- Can be $\mathcal{O}\left(10^{3}\right)$ times SM
- $\left|A_{\mathrm{SL}}^{s}\right|>\left|A_{\mathrm{SL}}^{d}\right|$ possible (unlike SM)

If large NP in B_{s} mixing $\Rightarrow A_{\text {SL }}^{s}$ and $S_{\psi \phi}$ are strongly correlated [ZL, Papucci, Perez]

Lattice can help reduce uncertainties

Getting tougher...

Hadrons with non-negligible widths (ρ, K^{*})
Heavy-to-light at small q^{2}

$B \rightarrow \rho \gamma$ and $K^{*} \gamma$

- First not fully hadronic FCNC $b \rightarrow d$ decay (B^{0} ratio cleaner than $B^{ \pm}$):

$$
\frac{\Gamma\left(B^{+} \rightarrow \rho^{+} \gamma\right)+2 \Gamma\left(B^{0} \rightarrow \rho^{0} \gamma\right)}{\Gamma\left(B^{+} \rightarrow K^{*+} \gamma\right)+\Gamma\left(B^{0} \rightarrow K^{* 0} \gamma\right)}=\left|\frac{V_{t d}}{V_{t s}}\right|^{2} \frac{1}{\xi_{\gamma}^{2}}=(2.96 \pm 0.57) \% \quad \text { (exp) }
$$

In SM just another way to get $\left|V_{t d} / V_{t s}\right|$; different sensitivity to NP than $\Delta m_{d} / \Delta m_{s}$
Sizable uncertainties: using $\xi_{\gamma}=1.2 \pm 0.2$ (made up...) $\Rightarrow\left|V_{t d} / V_{t s}\right|=0.21 \pm 0.04$
...sometimes smaller errors are quoted from QCD sum rules

- Can LQCD address some of the uncertainties?
- $S U(3)$-breaking in form factors at $q^{2}=0$?
- How about annihilation? (Saw in inclusive: OPE, given by local matrix elements)

Would need matrix elements of the form: $\langle\rho \gamma| T\left\{[(\bar{b} u)(\bar{u} d)] J_{\mathrm{em}}\right\}\left|B_{u, d}\right\rangle$

$B \rightarrow K^{(*)} \ell^{+} \ell^{-}$and $X_{s} \ell^{+} \ell^{-}$

- Sensitive besides O_{7} to $O_{9}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)$ and $O_{10}=\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)$ $H_{\text {eff }}$ and inclusive rate calculated to NNLO
[Many authors: Bobeth, Misiak, Urban, Munz, Gambino, Gorbahn, Haisch, Asatryan, Asatrian, Bieri, Hovhannisyan, Greub, Walker, Ghinculov, Hurth, Isidori, Yao, etc.]
- At LHCb, exclusive $B \rightarrow K^{(*)} \ell^{+} \ell^{-}, \pi \ell^{+} \ell^{-}, \rho \ell^{+} \ell^{-}$may give best sensitivity... if form factors are known precisely enough
- Inclusive: high precision only if \exists super-b Not inconceivable that large q^{2} region is measurable at LHCb semi-inclusively
- Large q^{2} : rate becomes precise by taking ratio with $B \rightarrow X_{u} \ell \bar{\nu}$; weak annihilation (B_{s} vs. B_{u} matrix element) may become a dominant uncertainty
[ZL \& Tackmann, arXiv:0707.1694]

Left vs. right

- SM: $O_{7}=\bar{s} \sigma_{\mu \nu} F^{\mu \nu}\left(\bar{m}_{b} P_{R}+\bar{m}_{s} P_{L}\right) b \quad$ NP: $O_{7}^{\prime}=\bar{s} \sigma_{\mu \nu} F^{\mu \nu}\left(\bar{m}_{b} P_{L}+\bar{m}_{s} P_{R}\right) b$ With O_{7} only, photon must be left-handed to conserve J_{z} along decay axis

Inclusive $B \rightarrow X_{s} \gamma$

Assumption: 2-body decay
Does not apply for $b \rightarrow s \gamma g$

Exclusive $B \rightarrow K^{*} \gamma$

... quark model (s_{L} implies $J_{z}^{K^{*}}=-1$)
... higher K^{*} Fock states
[Atwood, Gronau, Soni; Grinstein, Grossman, ZL, Pirjol]

$$
S_{K * \gamma}=-2\left(\bar{m}_{s} / \bar{m}_{b}+C_{7}^{\prime} / C_{7}\right) \sin 2 \beta+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)=-0.19 \pm 0.23(\exp)
$$

Left vs. right

- SM: $O_{7}=\bar{s} \sigma_{\mu \nu} F^{\mu \nu}\left(\bar{m}_{b} P_{R}+\bar{m}_{s} P_{L}\right) b \quad$ NP: $O_{7}^{\prime}=\bar{s} \sigma_{\mu \nu} F^{\mu \nu}\left(\bar{m}_{b} P_{L}+\bar{m}_{s} P_{R}\right) b$ With O_{7} only, photon must be left-handed to conserve J_{z} along decay axis

Inclusive $B \rightarrow X_{s} \gamma$

Assumption: 2-body decay
Does not apply for $b \rightarrow s \gamma g$

Exclusive $B \rightarrow K^{*} \gamma$

... quark model (s_{L} implies $J_{z}^{K^{*}}=-1$)
... higher K^{*} Fock states
[Atwood, Gronau, Soni; Grinstein, Grossman, ZL, Pirjol]
$S_{K * \gamma}=-2\left(\bar{m}_{s} / \bar{m}_{b}+C_{7}^{\prime} / C_{7}\right) \sin 2 \beta+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)=-0.19 \pm 0.23(\exp)$
Now... what does this have to do with LQCD...?

Left vs. right

- SM: $O_{7}=\bar{s} \sigma_{\mu \nu} F^{\mu \nu}\left(\bar{m}_{b} P_{R}+\bar{m}_{s} P_{L}\right) b$ NP: $O_{7}^{\prime}=\bar{s} \sigma_{\mu \nu} F^{\mu \nu}\left(\bar{m}_{b} P_{L}+\bar{m}_{s} P_{R}\right) b$

With O_{7} only, photon must be left-handed to conserve J_{z} along decay axis

Inclusive $B \rightarrow X_{s} \gamma$

Assumption: 2-body decay
Does not apply for $b \rightarrow s \gamma g$

Exclusive $B \rightarrow K^{*} \gamma$

... quark model (s_{L} implies $J_{z}^{K^{*}}=-1$)
... higher K^{*} Fock states
[Atwood, Gronau, Soni; Grinstein, Grossman, ZL, Pirjol]
$S_{K * \gamma}=-2\left(\bar{m}_{s} / \bar{m}_{b}+C_{7}^{\prime} / C_{7}\right) \sin 2 \beta+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)=-0.19 \pm 0.23$ (exp)
Now... what does this have to do with LQCD...?

- At LHCb $S_{K * \gamma}$ impossible \Rightarrow study $B \rightarrow K^{*} \ell^{+} \ell^{-}$angular distributions ($K \ell^{+} \ell^{-}$no good) at small q^{2} - precise form factors are necessary for good sensitivity

Nonleptonic decays

- SCET provides an effective theory framework to analyze many decays of interest

More work \& data needed to understand the expansions Why some predictions work at $\lesssim 10 \%$ level, while others receive $\gtrsim 30 \%$ corrections

- LQCD can help even without addressing hardest questions:
- Light quark masses: "chirally (non-)enhanced" $\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)$ terms

$$
\langle 0| \bar{u} \gamma_{5} d\left|\pi^{-}\right\rangle=-i f_{\pi} \frac{m_{\pi}^{2}}{\bar{m}_{d}+\bar{m}_{u}} \text { or try } \frac{\langle 0| \bar{u} \gamma_{\mu} \gamma_{5} d\left|\pi^{-}\right\rangle}{\langle 0| \bar{u} \gamma_{5} d\left|\pi^{-}\right\rangle}=-\frac{p_{\mu}}{f_{\pi}} \frac{\bar{m}_{d}+\bar{m}_{u}}{m_{\pi}^{2}} ?
$$

- Semileptonic form factors (precision, include ρ and K^{*}, larger recoil)
- Light cone distribution functions of heavy and light mesons
- $S U(3)$ breaking in form factors and distribution functions
- Moments, e.g., SCET can accomodate $\mathcal{B}\left(B \rightarrow \pi^{0} \pi^{0}\right)$ via $\left\langle k_{+}^{-1}\right\rangle_{B}=\int \frac{\mathrm{d} k_{+}}{k_{+}} \phi_{B}\left(k_{+}\right)$

Final comments

Need sensible averages (e.g., PDG CKM review)

- Need to be conservative: what are the uncertainties such that if predictions and data disagree by $5(3) \sigma$ statistical errors, people would believe it's new physics?

Need systematic and statistical uncertainties separately
"I'll believe a 3\% lattice theory error when the lattice has produced one successful prediction and several 3% postdictions" (Ben Grinstein, CKM 2006 plenary)

- Particularly important at present:

Scenarios:

$$
\begin{aligned}
& \left|V_{u s}\right|: f^{K \rightarrow \pi}, f_{K} / f_{\pi} \\
& \left|V_{c s}\right|,\left|V_{c d}\right|: f_{D_{(s)}}, f^{D \rightarrow K, \pi} \\
& \left|V_{t d}\right|,\left|V_{t s}\right|: f_{B_{(s)}}^{2} B_{B_{(s)}} \text { and } \xi \\
& \epsilon_{K}: \hat{B}_{K},\left|V_{u b}\right|: f^{B \rightarrow \pi}, \text { etc. }
\end{aligned}
$$

Need sensible averages (e.g., PDG CKM review)

- Need to be conservative: what are the uncertainties such that if predictions and data disagree by $5(3) \sigma$ statistical errors, people would believe it's new physics?

Need systematic and statistical uncertainties separately
"I'll believe a 3\% lattice theory error when the lattice has
produced one successful prediction and several 3% postdictions"
(Ben Grinstein, CKM 2006 plenary)
Scenarios:
$F_{D_{s}}$

arXiv:0712.1175 today: $f_{D_{s}}=(274 \pm 10 \pm 5) \mathrm{MeV}$ vs. $241(3) \mathrm{MeV}$?

- If experts cannot agree, it's unlikely the rest of the community would believe a claim of new physics (same for measurements using continuum methods)

Summary

- The SM flavor sector has been tested with impressive \& increasing precision KM phase is the dominant source of $C P$ violation in flavor changing processes
- Deviations from SM in $B_{d, s}$ mixing, $b \rightarrow s$ and even $b \rightarrow d$ decays are constrained NP in loops not yet bound to be \ll SM contribution (sensitive to scales \gg LHC)
- The non-observation of NP at $E_{\exp } \sim m_{B}$ is a problem for NP at $\Lambda_{\mathrm{NP}} \sim \mathrm{TeV}$
- Tests of 3-2 generation transitions will approach precision of 3-1, approaching 2-1 Many important matrix elements, $S U(3)$ \& HQS breaking, often useful separately
- If NP seen at LHC, flavor may provide important clues to model building

If NP is seen in flavor sector: study it in as many different operators as possible If NP is not seen in flavor sector: achieve what is theoretically possible In either case, LQCD will play important roles

Backup slides

Neutral meson mixings

- Identities, neglecting CPV in mixing (not too important, surprisingly poorly known)

$$
\begin{aligned}
& K: \text { long-lived }=C P \text {-odd }=\text { heavy } \\
& D: \text { long-lived }=C P \text {-odd }(3.5 \sigma)=\text { light }(2 \sigma) \\
& B_{s}: \text { long-lived }=C P \text {-odd }(1.5 \sigma)=\text { heavy in the } \mathrm{SM} \\
& B_{d}: \text { yet unknown, same as } B_{s} \text { in } \mathrm{SM} \text { for } m_{b} \gg \Lambda_{\mathrm{QCD}}
\end{aligned}
$$

Before 2006, we only knew experimentally the kaon line above

- We have learned a lot about meson mixings - good consistency with SM

	$x=\Delta m / \Gamma$		$y=\Delta \Gamma /(2 \Gamma)$		$A=1-\|q / p\|^{2}$	
	SM theory		data	SM theory		data
B_{d}	$\mathcal{O}(1)$	0.78	$y_{s}\left\|V_{t d} / V_{t s}\right\|^{2}$	-0.005 ± 0.019	$-(5.5 \pm 1.5) 10^{-4}$	$(-4.7 \pm 4.6) 10^{-3}$
B_{s}	$x_{d}\left\|V_{t s} / V_{t d}\right\|^{2}$	25.8	$\mathcal{O}(-0.1)$	-0.05 ± 0.04	$-A_{d}\left\|V_{t d} / V_{t s}\right\|^{2}$	$(0.3 \pm 9.3) 10^{-3}$
K	$\mathcal{O}(1)$	0.948	-1	-0.998	$4 \operatorname{Re} \epsilon$	$(6.6 \pm 1.6) 10^{-3}$
D	<0.01	<0.016	$\mathcal{O}(0.01)$	$y_{C P}=0.011 \pm 0.003$	$<10^{-4}$	$\mathcal{O}(1)$ bound only

Parameterization of NP in mixing

- Assume: (i) 3×3 CKM matrix is unitary; (ii) Tree-level decays dominated by SM NP in mixing - two new param's for each neutral meson:

$$
M_{12}=\underbrace{M_{12}^{\mathrm{SM}} r_{q}^{2} e^{2 i \theta_{q}}}_{\text {easy to relate to data }} \equiv \underbrace{M_{12}^{\mathrm{SM}}\left(1+h_{q} e^{2 i \sigma_{q}}\right)}_{\text {easy to relate to models }}
$$

- Observables sensitive to $\Delta F=2$ new physics:
$\Delta m_{B_{q}}=r_{q}^{2} \Delta m_{B_{q}}^{\mathrm{SM}}=\left|1+h_{q} e^{2 i \sigma_{q}}\right| \Delta m_{q}^{\mathrm{SM}}$
$S_{\psi K}=\sin \left(2 \beta+2 \theta_{d}\right)=\sin \left[2 \beta+\arg \left(1+h_{d} e^{2 i \sigma_{d}}\right)\right]$
$S_{\rho \rho}=\sin \left(2 \alpha-2 \theta_{d}\right)$
$S_{B_{s} \rightarrow \psi \phi}=\sin \left(2 \beta_{s}-2 \theta_{s}\right)=\sin \left[2 \beta_{s}-\arg \left(1+h_{s} e^{2 i \sigma_{s}}\right)\right]$
$A_{\mathrm{SL}}^{q}=\operatorname{Im}\left(\frac{\Gamma_{12}^{q}}{M_{12}^{q} r_{q}^{2} e^{2 i \theta_{q}}}\right)=\operatorname{Im}\left[\frac{\Gamma_{12}^{q}}{M_{12}^{q}\left(1+h_{q} e^{2 i \sigma_{q}}\right)}\right]$
$\Delta \Gamma_{s}^{C P}=\Delta \Gamma_{s}^{S M} \cos ^{2}\left(2 \theta_{s}\right)=\Delta \Gamma_{s}^{S M} \cos ^{2}\left[\arg \left(1+h_{s} e^{2 i \sigma_{s}}\right)\right]$
- Tree-level constraints unaffected: $\left|V_{u b} / V_{c b}\right|$ and $\gamma($ or $\pi-\beta-\alpha$)

Next milestone in $B_{s}: S_{B_{s} \rightarrow \psi \phi, \psi \eta^{(\prime)}}$

- $S_{\psi \phi}\left(\sin 2 \beta_{s}\right.$ for $C P$-even) analog of $S_{\psi K}$ CKM fit predicts: $\sin 2 \beta_{s}=0.0368_{-0.0018}^{+0.0017}$
- 2000: Is $\sin 2 \beta$ consistent with $\epsilon_{K},\left|V_{u b}\right|$ Δm_{B} and other constraints? 2009: Is $\sin 2 \beta_{s}$ consistent with ... ?

Plot $S_{\psi \phi}=$ SM value $\pm 0.10 / \pm 0.03$
$0.1 / 1 \mathrm{yr}$ of nominal LHCb data \Rightarrow

- With modest data sets, huge impact on our understanding; one of the most interesting early measurements
- Many important LHCb measurements

Minimal flavor violation (MFV)

- How strongly can effects of NP at scale Λ_{NP} be (sensibly) suppressed?
- SM global flavor symmetry $U(3)_{Q} \times U(3)_{u} \times U(3)_{d}$ broken by nonzero Yukawa's

$$
\mathcal{L}_{Y}=-Y_{u}^{i j} \overline{Q_{L i}^{I}} \widetilde{\phi} u_{R j}^{I}-Y_{d}^{i j} \overline{Q_{L i}^{I}} \phi d_{R j}^{I} \quad \tilde{\phi}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \phi^{*}
$$

- MFV: Assume Y's are the only source of flavor and $C P$ violation (cannot demand all higher dimension operators to be flavor invariant and contain only SM fields)
[Chivukula \& Georgi '87; Hall \& Randall '90; D'Ambrosio, Giudice, Isidori, Strumia '02]
- CKM and GIM $\left(m_{q}\right)$ suppressions similar to SM; allows EFT-like analyses Sizable corrections possible to some observables, even imposing MFV: $B \rightarrow X_{s} \gamma, B \rightarrow \tau \nu, B_{s} \rightarrow \mu^{+} \mu^{-}, \Delta m_{B_{s}}, \Omega h^{2}, g-2$, precision electroweak
- In some scenarios high- p_{T} LHC data may rule out MFV or make it more plausible

Many interesting rare B decays

- Important probes of new physics
- $B \rightarrow K^{*} \gamma$ or $X_{s} \gamma$: Best $m_{H^{ \pm}}$limits in 2HDM - in SUSY many param's
- $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$or $X_{s} \ell^{+} \ell^{-}: b s Z$ penguins, SUSY, right handed couplings

A crude guide ($\ell=e$ or μ)

Decay	\sim SM rate	physics examples
$B \rightarrow s \gamma$	3×10^{-4}	$\left\|V_{t s}\right\|, H^{ \pm}$, SUSY
$B \rightarrow \tau \nu$	1×10^{-4}	$f_{B}\left\|V_{u b}\right\|, H^{ \pm}$
$B \rightarrow s \nu \nu$	4×10^{-5}	new physics
$B \rightarrow s \ell^{+} \ell^{-}$	5×10^{-6}	new physics
$B_{s} \rightarrow \tau^{+} \tau^{-}$	1×10^{-6}	
$B \rightarrow s \tau^{+} \tau^{-}$	5×10^{-7}	\vdots
$B \rightarrow \mu \nu$	5×10^{-7}	
$B_{s} \rightarrow \mu^{+} \mu^{-}$	4×10^{-9}	
$B \rightarrow \mu^{+} \mu^{-}$	2×10^{-10}	

Replacing $b \rightarrow s$ by $b \rightarrow d$ costs a factor ~ 20 (in SM); interesting to test in both: rates, $C P$ asymmetries, etc.

In $B \rightarrow q l_{1} l_{2}$ decays expect $10-20 \%$ K^{*} / ρ, and $5-10 \% K / \pi$ (model dept)

LHC: $B \rightarrow K^{*} \ell^{+} \ell^{-}$and $B_{s} \rightarrow \mu^{+} \mu^{-}$
Inclusive modes impossible

Λ_{b} and B_{s} decays

- CDF measured in 2003: $\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c}^{+} \pi^{-}\right) / \Gamma\left(\bar{B}^{0} \rightarrow D^{+} \pi^{-}\right) \approx 2$

Factorization does not follow from large N_{c}, but holds at leading order in $\Lambda_{\mathrm{QCD}} / Q$
$\frac{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow D^{(*)+} \pi^{-}\right)} \simeq 1.8\left(\frac{\zeta\left(w_{\max }^{\Lambda}\right)}{\xi\left(w_{\max }^{D(*)}\right)}\right)^{2}$
Isgur-Wise functions may be expected to be comparable
Lattice could nail this

- $B_{s} \rightarrow D_{s} \pi$ is pure tree, can help to determine relative size of E vs. C [CDF '03: $\mathcal{B}\left(B_{s} \rightarrow D_{s}^{-} \pi^{+}\right) / \mathcal{B}\left(B^{0} \rightarrow D^{-} \pi^{+}\right) \simeq 1.35 \pm 0.43$ (using $\left.f_{s} / f_{d}=0.26 \pm 0.03\right)$]

Lattice could help: Factorization relates tree amplitudes, need $S U(3)$ breaking in $B_{s} \rightarrow D_{s} \ell \bar{\nu}$ vs. $B \rightarrow D \ell \bar{\nu}$ form factors from exp. or lattice

