CLEO-c Measurements of Purely Leptonic Decays of Charmed Mesons

Sheldon Stone, Syracuse University

Leptonic Decays: $D \rightarrow \ell^+ \nu$

Introduction: Pseudoscalar decay constants

c and \overline{q} can annihilate, probability is ∞ to wave function overlap Example :

In general for all pseudoscalars:

$$\Gamma(\mathbf{P}^+ \to \ell^+ \nu) = \frac{1}{8\pi} G_F^2 f_P^2 m_\ell^2 M_P \left(1 - \frac{m_\ell^2}{M_P^2} \right)^2 |V_{Qq}|^2$$

Calculate, or measure if V_{Oq} is known

Lattice QCD Meets Experiment, Fermilab, Dec. 10 - 11, 2007

New Physics Possibilities

Besides the obvious interest in comparing with Lattice & D_c^+ other calculations of f_{P} there are NP possibilities S Another Gauge Boson could mediate decay Ratio of leptonic decays could be modified e.g. in Standard Model

$$\frac{\Gamma(\mathrm{P}^{+} \rightarrow \tau^{+} \nu)}{\Gamma(\mathrm{P}^{+} \rightarrow \mu^{+} \nu)} = m_{\tau}^{2} \left(1 - \frac{m_{\tau}^{2}}{M_{P}^{2}}\right)^{2} / m_{\mu}^{2} \left(1 - \frac{m_{\mu}^{2}}{M_{P}^{2}}\right)^{2}$$

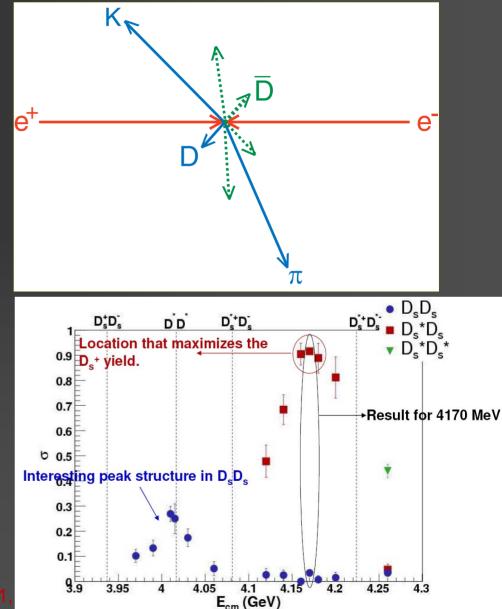
See Hewett [hepph/9505246] & Hou, PRD 48, 2342 (1993).

If H[±] couples to $M^2 \Rightarrow$ no effect

Lattice QCD Meets Experiment, Fermilab, Dec. 10 - 11, 2007

New Physics Possibilities II

Leptonic decay rate is modified by H[±] Can calculate in SUSY as function of m_a/m_c, In 2HDM predicted decay width is x by 0.06 $r_{q} = \left| 1 - M_{D}^{2} \left(\frac{\tan \beta}{M_{H^{\pm}}} \right)^{2} \left(\frac{m_{q}}{m_{c} + m_{q}} \right) \right|^{2}$ $\mathbf{r}_{s} = \text{meas rate/SM rate}$ 0.9 ■ Since m_d is ~0, effect $m_s/m_c=0.1$ can be seen only in D_{S} From Akeroyd See Akeryod [hep-ph/0308260] 0.8 0.2 0.1 0.3 $\tan \beta/M_{\mu}$

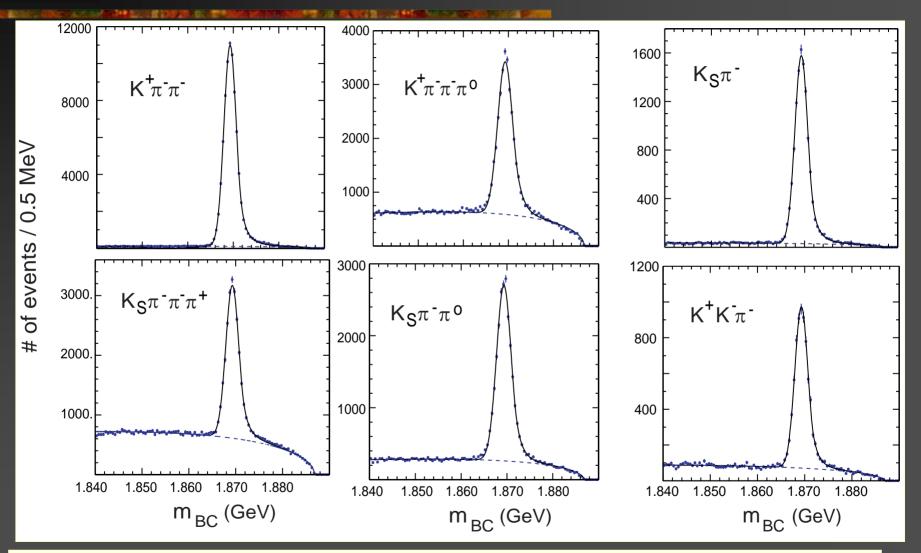

Experimental methods

 DD production at threshold: used by Mark III, and more recently by CLEO-c and BES-II.

•Unique event properties >Only \overline{DD} not \overline{DDx} produced •Large cross sections: $\sigma(D^{\circ}\overline{D^{\circ}}) = 3.72\pm0.09$ nb $\sigma(D^{+}D^{-}) = 2.82\pm0.09$ nb $\sigma(D_{S}D_{S}^{*}) = -0.9$ nb Continuum ~12 nb

- Ease of B measurements using "double tags"
- *B*_A = # of A/# of D's

Lattice QCD Meets Experiment, Fermilab, Dec. 10 – 1

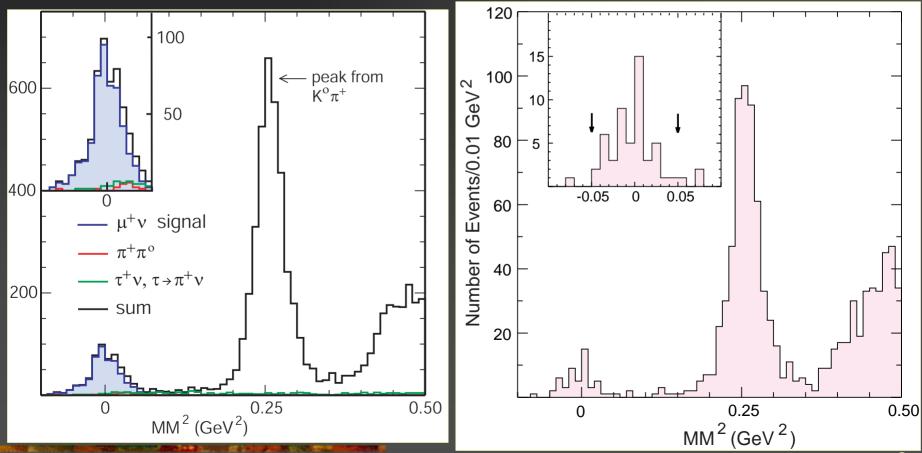

Technique for $D^+ \to \mu^+ \nu$

- Fully reconstruct a D⁻, and count total # of tags
- Seek events with only one additional oppositely charged track and no additional photons > 250 MeV (to veto D⁺ $\rightarrow \pi^{+}\pi^{0}$)
- Charged track must deposit only minimum ionization in calorimeter

• Compute MM². If close to zero then almost certainly we have a $\mu^+\nu$ decay. $MM^2 = (E_{D^+} - E_{\ell^+})^2 - (\vec{p}_{D^+} - \vec{p}_{\ell^+})^2$

We know $E_{D^+} = E_{beam}$, $p_{D^+} = -p_{D^-}$

D⁻ Candidates (in 281 pb⁻¹)


of tags = 158,354±496, includes charge-conjugate modes

attice QCD Meets Experiment, Fermilab, Dec. 10 – 11, 2007

Measurement of f_D+

MC Expectations from 1.7 fb⁻¹, 30 X of our data

Data: 50 events in the signal region in 281 pb⁻¹

Lattice QCD Meets Experiment, Fermilab, Dec. 10 – 11, 2007

Deriving a Value for f_D+

Backgrounds						
Mode	<i>B</i> (%)	# Events				
$\pi^+\pi^0$	0.13±0.02	1.40±0.18±0.22				
${ m K}^0\pi^+$	2.77±0.18	0.33±0.19±0.02				
$\tau^+\nu \ (\tau \rightarrow \pi^+\nu)$	2.65* <i>B</i> (D+→μ+ν)	1.08±0.15±0.16				
Other D⁺, D⁰		<0.4, <0.4 @ 90% c.l.				
Continuum		<1.2 @ 90% c.l.				
Total		$2.81 {\pm} 0.30_{-0.27}^{+0.84}$				

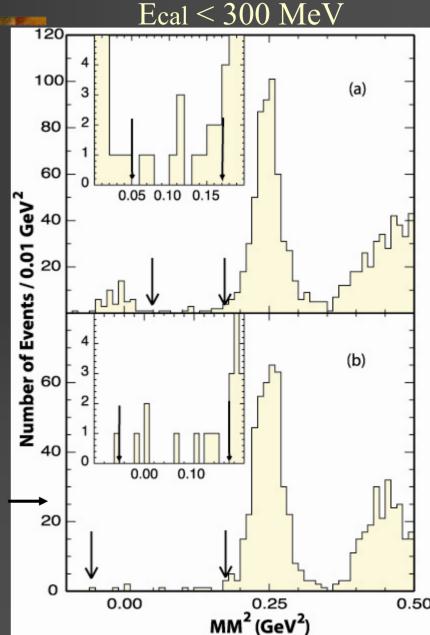
■ There are 158,354 tags. $\varepsilon = 67.7\%$ ■ $\mathcal{B}(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}$

- $f_{D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \text{ MeV } |V_{cd}| = .2238$
- $\mathcal{B}(D^+ \to e^+ v) < 2.4 \times 10^{-5} @ 90\% \text{ c.l.},$

Efficiencies: μ^+ detection (69.4%); extra shower (96.1%); correction for easier tag reconstruction in $\mu^+\nu$ events (1.5%)

attice orules out some non-Standard model theories

Systematic Errors

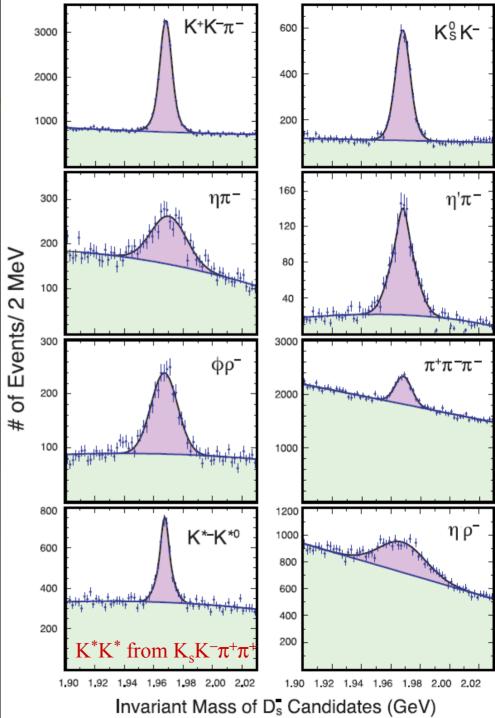

Source of Error	%
Finding the μ^+ track	0.7
Minimum ionization of μ^+ in EM cal	1.0
Particle identification of μ^+	1.0
MM ² width	1.0
Extra showers in event > 250 MeV	0.5
Background	0.6
Number of single tag D ⁺	0.6
Monte Carlo statistics	0.4
Total	2.1

Lattice QCD Meets Experiment, Fermilab, Dec. 10 – 11, 2007

Upper limit on $D^+ \rightarrow \tau^+ \nu$

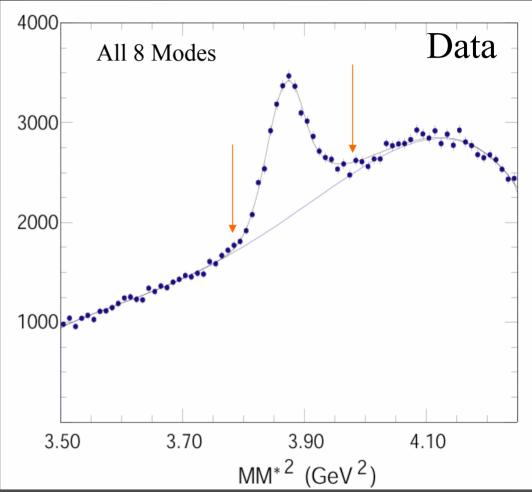
- By using intermediate MM² region
 $\mathcal{B}(D^+ \rightarrow \tau^+ \nu) < 2.1 \times 10^{-3}$ $\frac{\Gamma(D^+ \rightarrow \tau^+ \nu)}{\Gamma(D^+ \rightarrow \mu^+ \nu)} < 1.8 \times (2.65)$
 - where 2.65 is SM expectation
 - both at 90% c.l

Ecal > 300 MeV


Lattice QCD Meets Experiment, Fermilab, Dec. 10 – 11, 2007

Measurements of f_{Ds}

- Two separate techniques. [Here expect in SM: $\Gamma(D_S \rightarrow \tau^+ \nu) / \Gamma(D_S \rightarrow \mu^+ \nu) = 9.72$] • (1) Measure $D_S^+ \rightarrow \mu^+ \nu$ along with $D_S \rightarrow \tau^+ \nu$, $\tau \rightarrow \pi^+ \nu$. This requires finding a D_S⁻ tag, a γ from either $D_S^* \rightarrow \gamma D_S^-$ or $D_S^{*+} \rightarrow \gamma \mu^+ \nu$. Then find the muon or pion & apply kinematical constraints (mass & energy) to resolve this ambiguity & improve resolution (use 314 pb⁻¹, results are *published*)
 - (2) Find $D_S^+ \rightarrow \tau^+ \nu$, $\tau \rightarrow e^+ \nu \nu$ opposite a D_S^- tag (use 298 pb⁻¹, results are final arXiv:0712.1175)

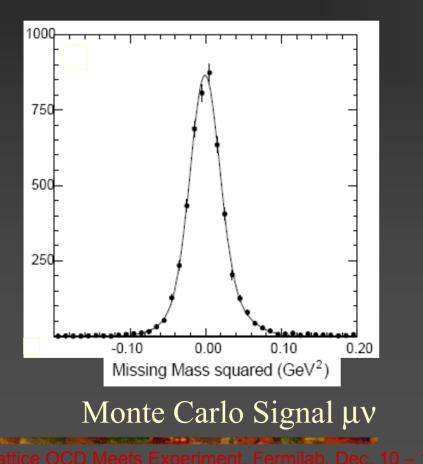

Invariant masses

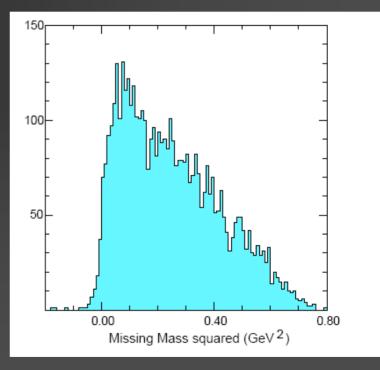
- $\mathcal{D}_{S} \rightarrow \mu^{+} \nu Study$
- D_S studies done at E_{cm}=4170 MeV
- To choose tag candidates:
 - Fit distributions & determine σ
 - Cut at ±2.5 σ
- Define sidebands to measure backgrounds 5-7.5 σ
- Total # of Tags
 = 31,302± 472 (stat)

Tag Sample using γ

First we define the tag sample by computing the MM*² off of the $\gamma \& D_S$ tag $MM^{*2} = (E_{CM} - E_{D_{c}} - E_{\gamma})^{2} - (-\vec{p}_{D_{c}} - \vec{p}_{\gamma})^{2}$ Total of $11880 \pm 399 \pm 504$ tags, after the selection on MM^{*2}.

Define Three Classes

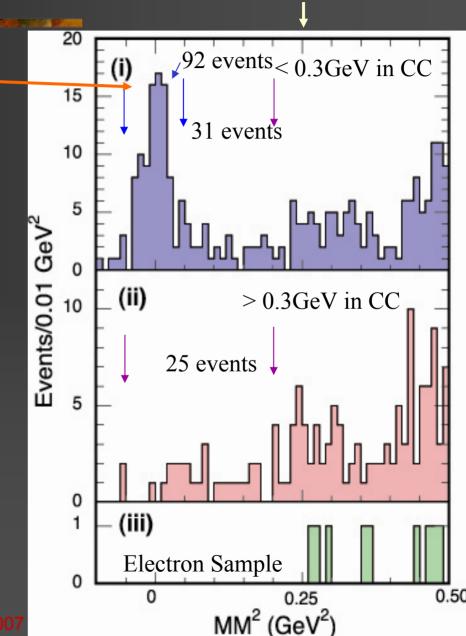

Class (i), single track deposits < 300 MeV in calorimeter (consistent with μ) & no other γ > 300 MeV. (accepts 99% of muons and 60% of kaons & pions)


Class (ii), single track deposits > 300 MeV in calorimeter & no other γ > 300 MeV (accepts 1% of muons and 40% of kaons & pions)

 Class (iii) single track consistent with electron & no other γ > 300 MeV

The MM²

• To find the signal events, we compute $MM^{2} = (E_{CM} - E_{D_{S}} - E_{\gamma} - E_{\mu})^{2} - (-\vec{p}_{D_{S}} - \vec{p}_{\gamma} - \vec{p}_{\mu})^{2}$



Monte Carlo Signal $\tau v, \tau \rightarrow \pi v$

MM² In Data

• Clear $D_S^+ \rightarrow \mu^+ \nu$ signal for case (i) Most events < 0.2</p> GeV² are $D_S \rightarrow \tau^+ \nu$, $\tau \rightarrow \pi^+ \nu$ in cases (i) & (ii) ■ No $D_S \rightarrow e^+ v$ seen, case (iii)

Lattice QCD Meets Experiment, Fermilab, Dec. 10 – 11, 2007

 mK^{02}

Branching Ratio & Decay Constant

• $D_S^+ \rightarrow \mu^+ \nu$

92 signal events, 3.5 background, use SM to calculate τv yield near 0 MM² based on known $\tau v/\mu v$ ratio

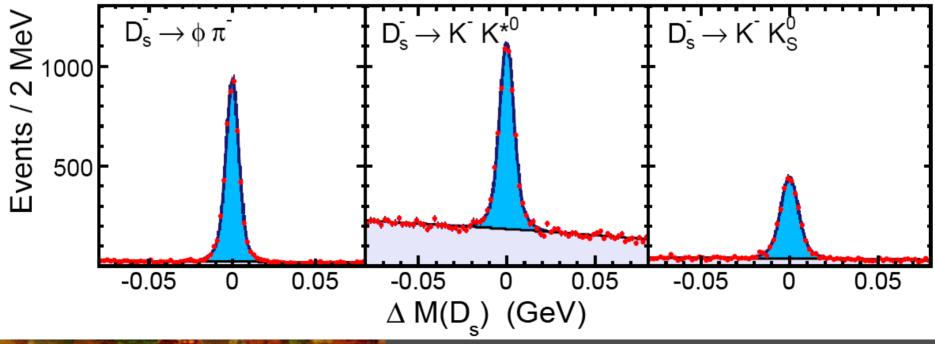
■ $B(D_S^+ \rightarrow \mu^+ \nu) = (0.597 \pm 0.067 \pm 0.039)\%$

$$D_{S}^{+} \rightarrow \tau^{+} \nu, \tau^{+} \rightarrow \pi^{+} \nu$$

Sum case (i) 0.2 > MM² > 0.05 GeV² & case (ii) MM² < 0.2 GeV². Total of 56 signal and 8.6 bkgrnd

■
$$B(D_S^+ \rightarrow \tau^+ \nu) = (8.0 \pm 1.3 \pm 0.4)\%$$

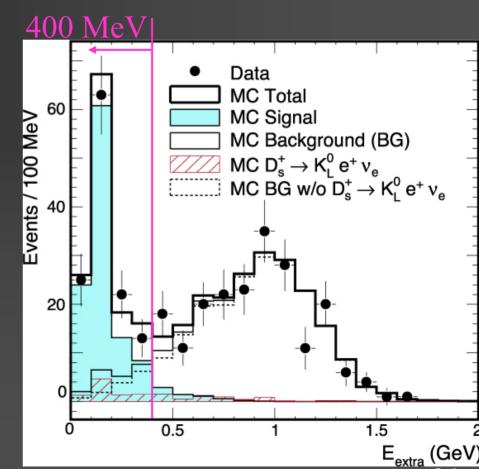
- By summing both cases above, find
 - $B^{eff}(D_{S}^{+} \rightarrow \mu^{+} \nu) = (0.638 \pm 0.059 \pm 0.033)\%$
- $f_{Ds} = 274 \pm 13 \pm 7 \text{ MeV}$, for $|V_{cs}| = 0.9738$ • $B(D_S^+ \rightarrow e^+ v) < 1.3 \times 10^{-4}$


 $\mathcal{C}(D_S^+ \rightarrow \mu^+ \nu)$ Systematic errors

Error Source	Size $(\%)$
Track finding	0.7
Photon veto	1
Minimum ionization	1
Number of tags	5
Total	5.2

Lattice QCD Meets Experiment, Fermilab, Dec. 10 – 11, 2007

Measuring $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$


- $B(D_S^+ \rightarrow \tau^+ \nu) \bullet B(\tau^+ \rightarrow e^+ \nu \nu) \sim 1.3\%$ is "large" compared with expected $B(D_S^+ \rightarrow Xe^+ \nu) \sim 8\%$
- We will be searching for events opposite a tag with one electron and not much other energy

Lattice QCD Meets Experiment, Fermilab, Dec. 10 – 11, 2007

Measuring $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- Technique is to find events with an e⁺ opposite D_S⁻ tags & no other tracks, with Σ calorimeter energy < 400 MeV
 No need to find γ from D_S*
- B(D_S⁺→ $\tau^+\nu$) =(6.17±0.71±0.36)% f_{Ds}=273 ± 16 ± 8 MeV

Lattice QCD Meets Experiment, Fermilab, Dec. 10 - 11, 2007

$f_{D_s} \& f_{D_s} / f_{D^+}$

Weighted Average: f_{Ds}=274±10±5 MeV, the systematic error is mostly uncorrelated between the measurements

• Using $f_{D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \text{ MeV}^{\dagger}$

M. Artuso et al., Phys .Rev. Lett. 95 (2005) 251801

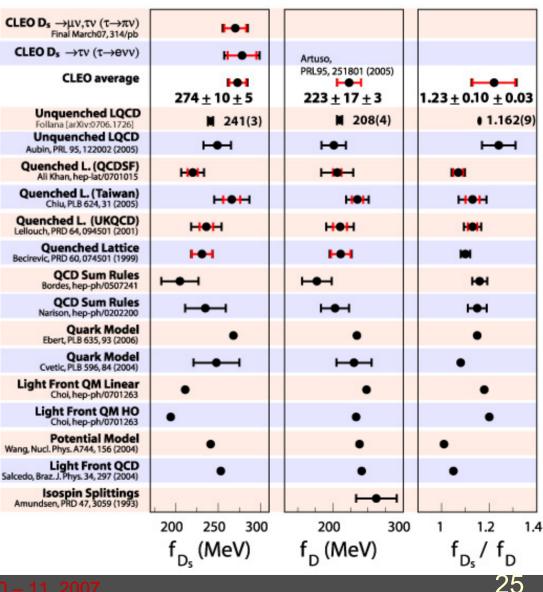
- $f_{Ds}/f_{D^+}=1.23\pm0.10\pm0.03$
- $\Gamma(\mathsf{D}_{\mathsf{S}}^{+} \to \tau^{+} \nu) / \Gamma(\mathsf{D}_{\mathsf{S}}^{+} \to \mu^{+} \nu) =$
 - 11.0±1.4±0.6, SM=9.72,

consistent with lepton universality

Radiative Corrections

- Not just final state radiation which is already corrected for.
- Includes $D \rightarrow D^* \rightarrow \gamma D \rightarrow \gamma \mu^+ \nu$. Based on calculations of Burdman et al.
- $\Gamma(\mathsf{D}_{(S)}^{+} \rightarrow \gamma \mu^{+} \nu) / \Gamma(\mathsf{D}_{(S)}^{+} \rightarrow \mu^{+} \nu) \sim 1/40 1/100$
- Using narrow MM² region makes this much smaller
- Other authors in general agreement, see Hwang Eur. Phys. J. C46, 379 (2006), except Korchemsky, Pirjol & Yan PRD 61, 114510 (2000)
- Wang, Chang & Feng [hep-ph/0102251] find a -8% correction for $\Gamma(D_S \rightarrow \tau^+ v)$, negligible for $\Gamma(D_S \rightarrow \mu^+ v)$.
- Somebody please help!

Comparison with Other Experiments


Exp.	Mode	$\mathcal{B}_{\phi\pi}$ (%)	$f_{D_s^+}$ (MeV)
CLEO-c	$\mu^+ \nu \ [7]$		$264 \pm 15 \pm 7$
CLEO-c	$\tau^+ \nu$ [7]		$310 \pm 25 \pm 8$
CLEO-c	$\tau^+ \nu$ [8]		$273 \pm 16 \pm 8$
CLEO-c	combined	analimin ama	$274 \pm 10 \pm 5$
Belle $[9]$	$\mu^+\nu$	preliminary Manchester EPS	$275 \pm 16 \pm 12$
Average			274 ± 10
CLEO [10]	$\mu^+ u$	3.6 ± 0.9 2	$273 \pm 19 \pm 27 \pm 33$
BEATRICE [11]	$\mu^+ u$	3.6 ± 0.9 3	$312 \pm 43 \pm 12 \pm 39$
ALEPH [12]	$\mu^+ u$	$3.6 {\pm} 0.9$	$282 \pm 19 \pm 40$
ALEPH [12]	$\tau^+ \nu$		
L3 [13]	$\tau^+ \nu$	(2	$299 \pm 57 \pm 32 \pm 37$
OPAL [14]	$\tau^+ \nu$		$283 \pm 44 \pm 41$
BaBar $[15]$	$\mu^+ u$	$4.71 {\pm} 0.46$	$283 \pm 17 \pm 7 \pm 14$

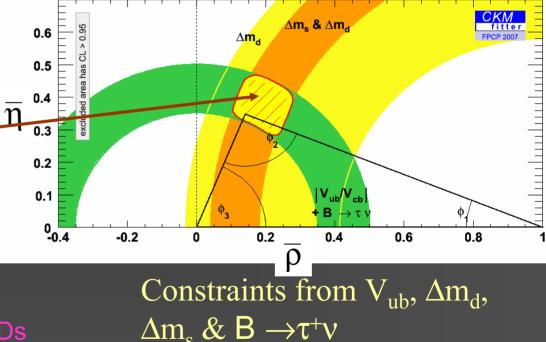
 CLEO-c is most precise result to date for both f_{Ds} & f_D+

Comparisons with Theory

We are ~3σ above Follana et al. Either:

- Calculation is wrong
- There is new physics that interferes constructively with SM
- Note: No value of M_H is allowed in 2HDM at 99.5% c.ℓ.
- Comparing measured fD_S/fD⁺ with Follana prediction we find m_H>2.2 GeV tanβ
 Using Follana ratio find |V_{cd}/V_{cs}|=0.217±0.019 (exp) ±0.002(theory)

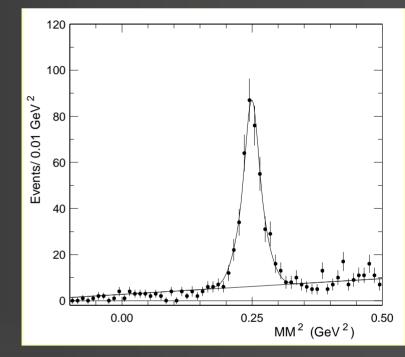
Lattice QCD Meets Experiment, Fermilab, Dec. 10 – 11, 2007


Projections

We will almost triple the D⁺ sample, including some improvements in technique, error in f_{D⁺} should decrease to ~3.7% (8 MeV)
 We will likely double the D_S sample, may improve technique, expect error in f_{Ds} to decrease to ~2.6% (7 MeV)

The End

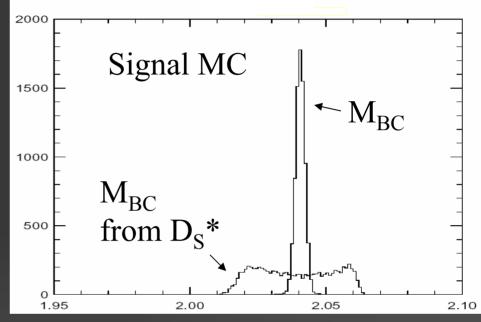
Goals in Leptonic Decays


- Test theoretical calculations in strongly coupled theories in non-perturbative regime
- f_B & f_{Bs}/f_B needed to improve constraints from $\Delta m_d \& \Delta m_S / \Delta m_d$ Hard to measure directly (i.e. $B \rightarrow \tau^+ \nu$ gives $V_{\mu b} f_{B}$), but we can determine f_D & f_{Ds} using $D \rightarrow \ell^+ v$ and use

them to test theoretical models (i.e. Lattice QCD)

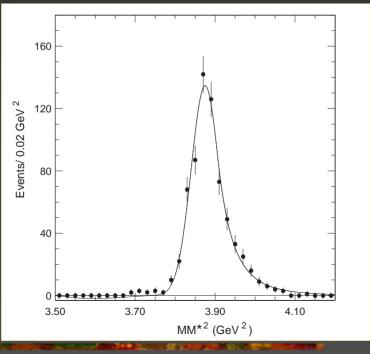
Check: $\mathscr{C}(D_S^+ \rightarrow K^+ K^o)$

- Do almost the same analysis but consider MM² off of an identified K⁺
- Allow extra charged tracks and showers so not to veto K^o decays of

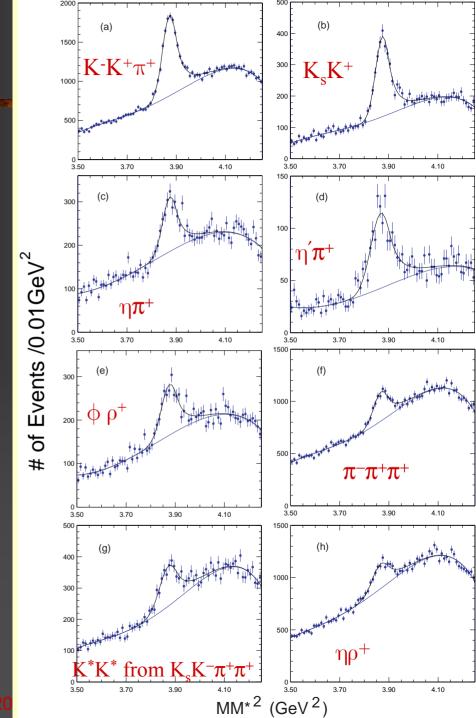

not to veto K° decays or interactions in EM
Signal verifies expected MM² resolution
Find (2.90±0.19±0.18)%, compared with result from double tags (3.00±0.19±0.10)%

CLEO D_S⁺ Results at 4170 MeV

Since e⁺e⁻→D_S*D_S, the D_S from the D_S* will be smeared in beamconstrained mass.


$$M_{BC}^2 = E_{beam}^2 - \sum \vec{p}_i^2$$

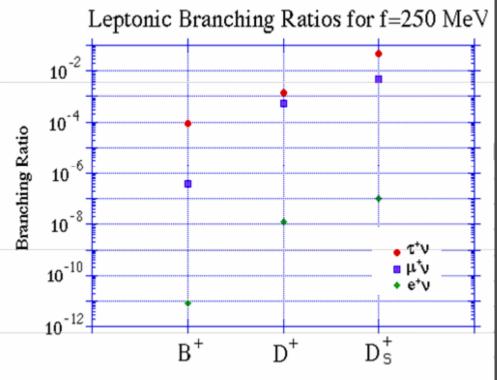
 ∴cut on M_{BC} & plot invariant mass (equivalent to a p cut)
 We use 314 pb⁻¹ of data



Beam Constrained Mass (GeV)

#Tags: $D_s + \gamma$ • Compute MM*2 $MM^{*2} = (E_{CM} - E_{D_s} - E_{\gamma})^2 - (-\vec{p}_{D_s} - \vec{p}_{\gamma})^2$ in each individual mode • Use $D_s * D_s$ sample to measure shape of tail

Lattice QCD Meets Experiment, Fermilab, Dec. 10 – 11, 2



Measurement of $D_S^+ \rightarrow \mu^+ \nu$

In this analysis we use D_S*D_S events where we detect the γ from the $D_S^* \rightarrow \gamma D_S$ decay • We see all the particles from $e^+e^- \rightarrow D_s^*D_s$, γ , D_S (tag) + μ^+ except for the v We use a kinematic fit to (a) improve the resolution & (b) remove ambiguities Constraints include: total p & E, tag D_S mass, $\Delta m = M(\gamma D_S) - M(D_S)$ [or $\Delta m = M(\gamma \mu \nu) - M(\mu \nu)$] = 143.6 MeV, E of D_{S} (or D_{S}^{*}) fixed • Lowest χ^2 solution in each event is kept • No χ^2 cut is applied

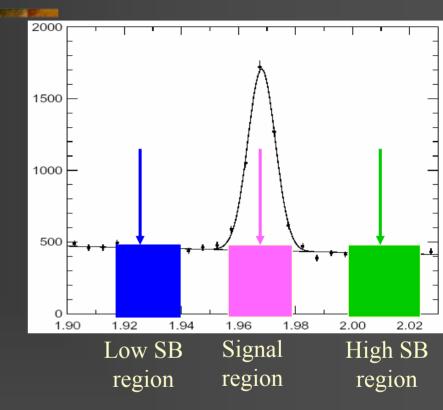
Expected \mathscr{B} for $\mathsf{P}^+ \rightarrow \ell^+ \nu$ decays

- We know:
 - f_{π} = 131.73±0.15 MeV f_{K} = 160.6±1.3 MeV
- The D_s has the largest
 B, for µ⁺v rate is ~0.5%
- f_{Ds} Measured by several groups, best CLEO II, but still poorly known
- e⁺v rate is ~4 orders of magnitude smaller than µ⁺v, in the Standard Mode

Combining Semileptonics & Leptonics

Semileptonic decay rate into Pseudoscalar:

$$\frac{d\Gamma(D \to Pe\nu)}{dq^2} = \frac{\left|V_{cq}\right|^2 P_P^3}{24\pi^3} \left|f_+(q^2)\right|^2$$


Note that the ratio below depends only on QCD:

$$\frac{1}{\Gamma(D^+ \to \ell \nu)} \frac{d\Gamma(D^+ \to \pi e \nu)}{dq^2} \, \alpha \frac{P_{\pi}^3 \left| f_+(q^2) \right|^2}{f_{D^+}^2}$$

Background Samples

- Two sources of background
- A) Backgrounds under invariant mass peaks – Use sidebands to estimate
- In μ⁺ν signal region 3.5 background (92 total)
- bkgrnd MM²<0.20 GeV²= 9.0±2.3
- B) Backgrounds from real D_S decays, e.g. π⁺π^oπ^o, or D_S→ τ⁺ν, τ→π⁺π^oν.... < 0.2 GeV², none in μν signal region

■ B(D_S $\rightarrow \pi^+\pi^\circ$) < 1.1x10⁻³ & γ energy cut yields <0.2 evts

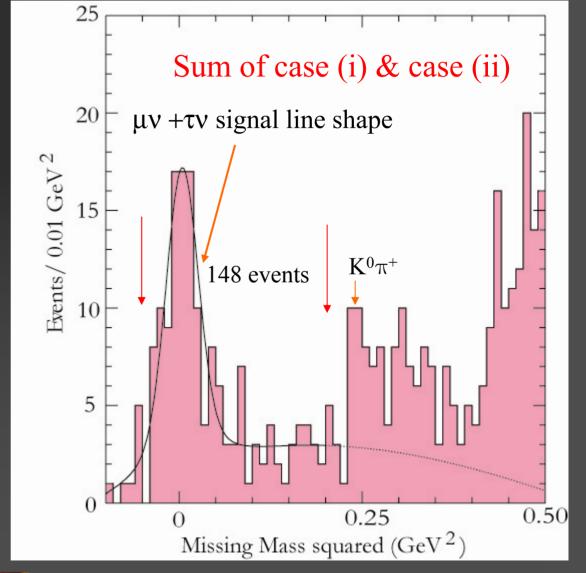

Backgrounds from real D_S^+

TABLE III: Backgrounds in the $D_s^+ \to \tau^+ \nu$, $\tau^+ \to \pi^+ \overline{\nu}$ sample for correctly reconstructed tags, case (i) for $0.05 < \text{MM}^2 < 0.20 \text{ GeV}^2$ and case (ii) for $-0.05 < \text{MM}^2 < 0.20 \text{ GeV}^2$.

Source	$\mathcal{B}(\%)$	# of events case (i)	# of events case(ii)	Sum
$D_s^+ \to X \mu^+ \nu$	8.2	$0^{+1.8}_{-0}$	0	$0^{+1.8}_{-0}$
$D_s^+ \rightarrow \pi^+ \pi^0 \pi^0$	1.0	$0.03 {\pm} 0.04$	$0.08 {\pm} 0.03$	$0.11{\pm}0.04$
$D_s^+ \to \tau^+ \nu$	6.4			
$\tau^+ \to \pi^+ \pi^0 \overline{\nu}$	1.5	$0.55{\pm}0.22$	$0.64{\pm}0.24$	$1.20{\pm}0.33$
$\tau^+ \to \mu^+ \overline{\nu} \nu$	1.0	$0.37 {\pm} 0.15$	0	$0.37{\pm}0.15$
Sum		$1.0^{+1.8}_{-0}$	0.7 ± 0.2	$1.7^{+1.8}_{-0.4}$

Sum of $D_S^+ \rightarrow \mu^+ \nu + \tau^+ \nu$, $\tau \rightarrow \pi^+ \nu$

As we will see, there is very little background present in any sub-sample for $MM^2 < 0.2$ GeV²

