Rare Decays at the Tevatron

Michael Weinberger

Texas A&M University

Lattice QCD Meets Experiment Workshop 2007

Outline

#Experimental Environment

$$\sharp B_S \rightarrow \mu \mu \text{ (CDF \& D0)}$$

$$\sharp B_S \rightarrow \mu \mu X (CDF \& D0)$$

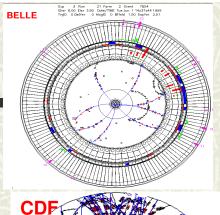
$$\sharp B, \Lambda_b \to hh (CDF)$$

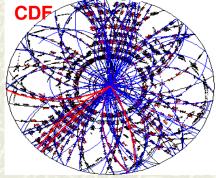
TEVATRON

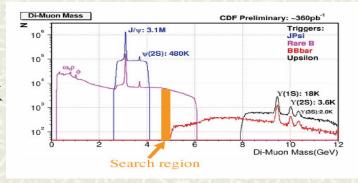
Tevatron is gold mine for rare B decay searches:

- Enormous b production cross section.
- x1000 times larger than e+e-**B** factories
- All B species are produced $(B^0, B^+, B_s, \Lambda_b...)$

Dataset:

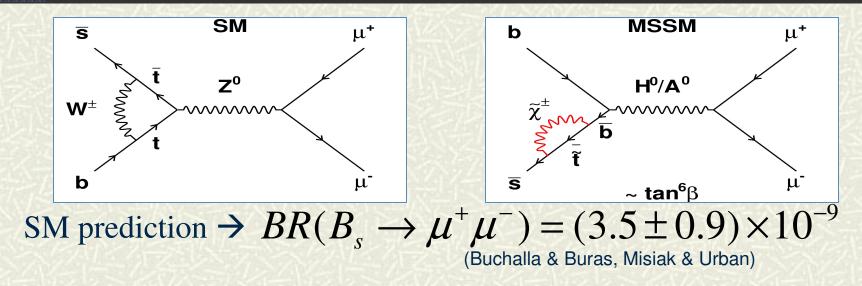

- Di-muon sample, easy to trigger on with good purity level in hadronic environment
- Analyses presented today use


0.450 to 2 fb⁻¹ of data




B Triggers

- Trigger is the lifeline of B physics in a hadron environment
- Rare B "Di-Muon" triggers:
 - Low single muon thresholds
 - Require Sum p_T or outer muon chambers
 - Di-muon trigger is the primary trigger for the CDF $B_s \rightarrow \mu^+ \mu^-$ search
- "Hadronic" triggers using silicon vertex detectors:
 - Exploit long lifetime of heavy quarks
 - Two-track trigger
 - Two oppositely charged tracks with large impact parameters



$$B_{s(d)} \rightarrow \mu^+\mu^-$$

BRIEF MOTIVATION

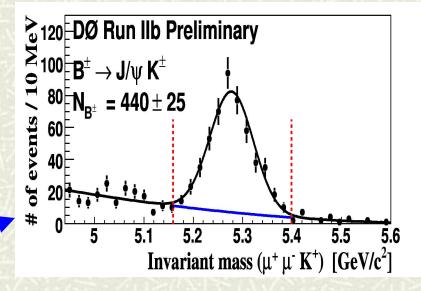
In the Standard Model, the FCNC decay of B $\rightarrow \mu^+\mu^-$ is heavily suppressed

- $B_d \rightarrow \mu\mu$ is further suppressed by CKM factor $(V_{td}/V_{ts})^2$
- SM prediction is below the sensitivity of current experiments
 SM → Expect to see 0 events at the Tevatron

Any signal at the Tevatron would indicate new physics

•New limits place boundaries on theoretical models

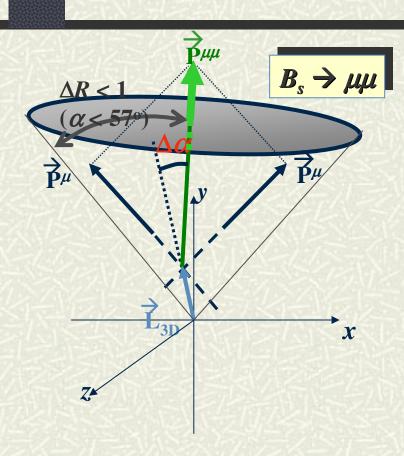
Analysis Overview


$$BR(B_s \to \mu^+ \mu^-) = \frac{N_{Bs}}{N_{B+}} \frac{\alpha_{B+} \cdot \varepsilon_{B+}^{total}}{\alpha_{Bs} \cdot \varepsilon_{Bs}^{total}} \frac{f_{b \to B+}}{f_{b \to Bs}} BR(B^+ \to J/\psi K^+) BR(J/\psi \to \mu^+ \mu^-)$$

Motto: reduce background and keep signal efficiency high

Step 1: Pre-selection cuts to reject background obvious

Step 2: Optimization (need to know signal efficiency and expected background)


Step 3: Reconstruct B⁺ → J/ψ K⁺ normalization mode

Step 4: Open the box → compute branching ratio or set limitel Weinberger Texas A&M

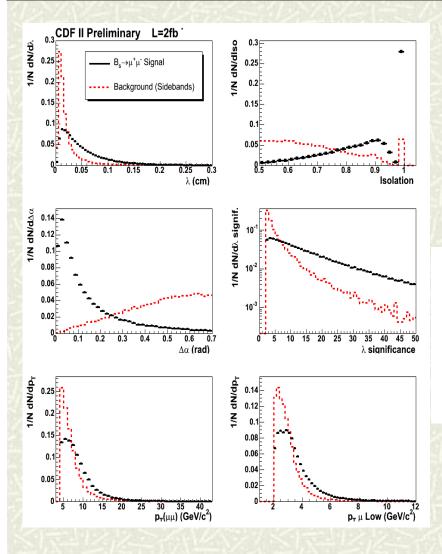
B→ µ+µ- SIGNAL VS BKG DISCRIMINATION

■ $\mu^+\mu^-$ mass ~ $\pm 2.5\sigma$ mass window

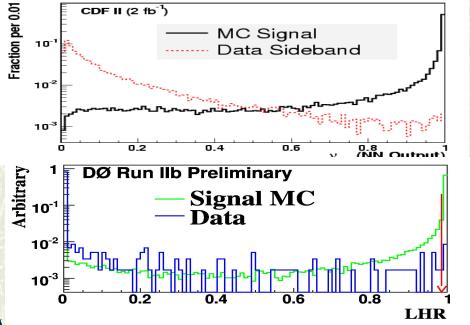
■ B vertex displacement:
$$\lambda = \frac{cL_{3D}M}{|\vec{p}(B)|}$$

■ Isolation (Iso):
$$Iso = \frac{p_T(B)}{p_T(B) + \sum_i p_T^i(\Delta R_i < 1)}$$

(fraction of p_T from $B \rightarrow \mu\mu$ within $\Delta R = (\Delta \eta^2 + \Delta \phi^2)^{1/2}$ cone of 1)


• "pointing $(\Delta \alpha)$ ": $\Delta \alpha = \angle (\vec{p}(B) - \vec{L}_{3D})$

(angle between B_s momentum and decay axis)


- λ/σ_{λ} : proper decay length significance
- $p_T(μμ)$: transverse momentum of Bs
- $p_T(\mu)^{low}$: lower μ pT

Isolation, pointing, and λ/σ_{λ} used by D0 Likelihood

Discriminating Variables

- ■ Combine in Likelihood for D0 or NN (New Element) for CDF which takes into account the correlations between the variables
 - Removes 25% of the background
- Set limit by using 3 NN bins and 5 mass bins (New Element)
 - Improves expected limit by 25%
- **Unbiased optimization**
 - Based on simulated signal and data sidebands

Michael Wemberger

TEXAS ACIVI

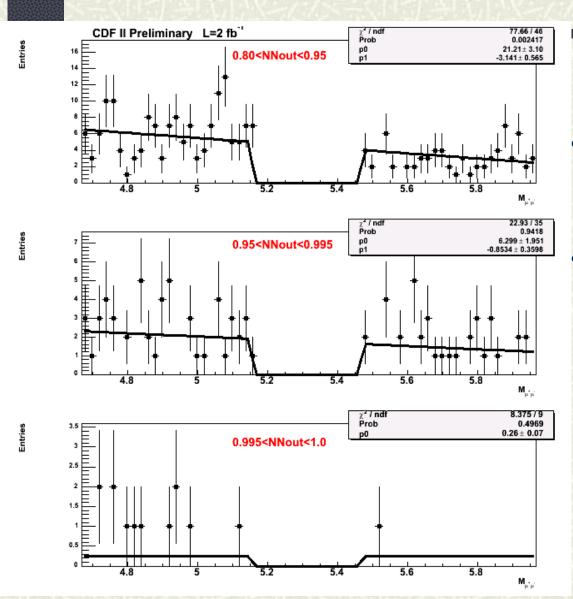
CDF Control Samples

 Independent background control samples to cross check the combinatoric background estimate procedure

OS -: Opposite-sign dimuon sample with ct<0

SS+: Same-sign dimuon sample with ct>0

SS-: Same-sign dimuon sample with ct<0

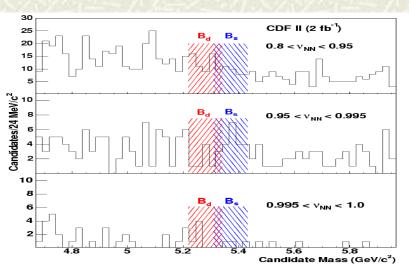

FM: Fake muon sample ct>0
(require at least one muon leg to fail our muon likelihood and dE/dX requirement)

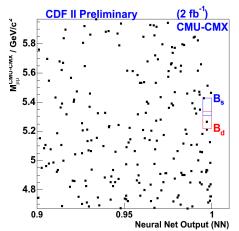
Checking Control Samples

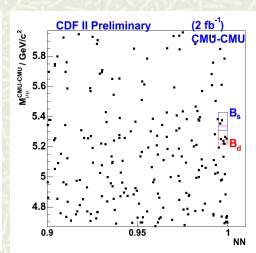
NeuralNet		CMU-CMU			CMU-CMX		
	cut	pred	obsv	prob	pred	obsv	prob
OS-	>0.80	231±8	230	48%	254±9	278	10%
	>0.90	133±6	137	37%	142±7	163	6%
	>0.995	23±3	21	41%	18±2	29	2%
SS+	>0.80	1.2±0.6	0	34%	2.4±0.8	1	34%
	>0.95	0.6±0.4	0	53%	1.2±0.6	1	66%
	>0.995	0.3±0.3	0	70%	0.3±0.3	0	70%
SS-	>0.80	2.4±0.8	2	57%	7.5±1.5	6	40%
	>0.90	1.2±0.6	2	34%	5.1±1.2	3	29%
	>0.98	0.3±0.3	0	70%	2.1±0.8	1	41%
FM	>0.80	26.1±2.8	25	48%	6.3±1.4	6	56%
	>0.95	8.4±1.6	5	19%	2.1±0.8	1	41%
	>0.995	3.3±1.0	3	58%	0.6±0.4	0	55%

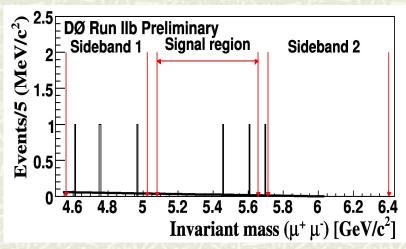
Using a wider ± 150 MeV signal window for cross-check

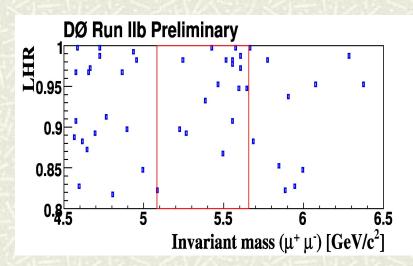
Combinatorial BKG (2/fb)


- Likelihood fit (polynomial) to sidebands
- Separate fit for 3 NN slices


Use linear fit for NN>0.995 slice


Also calculate the

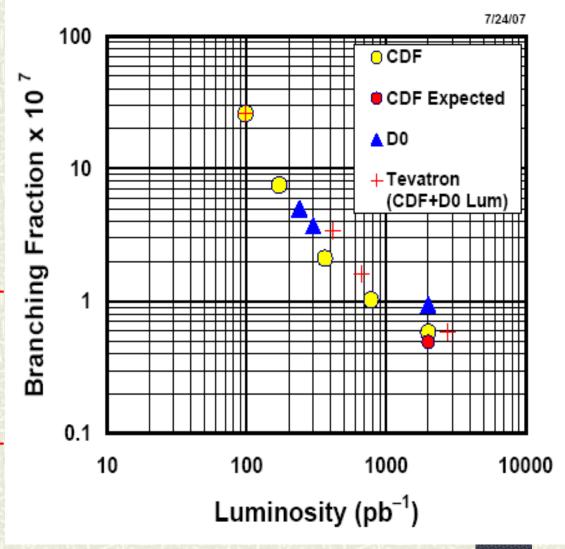

B->hh contributions which are added in to background estimate


Unblinding the Signal Region

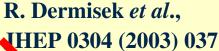
No significant excess observed!

Limit History

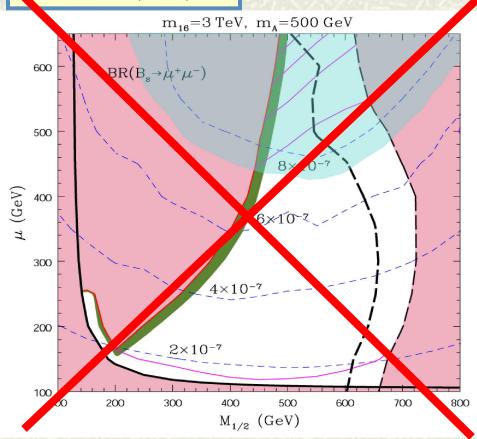
New Results are world's best limits

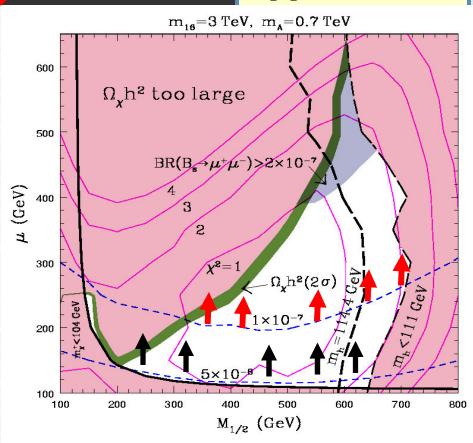

CDF:

 $Br(B_s \rightarrow \mu\mu) < 4.7 \times 10^{-8} @ 90\%CL$ < $5.8 \times 10^{-8} @ 95\%CL$


D0:

Br($B_s \rightarrow \mu\mu$)< 7.5×10⁻⁸ @ 90%CL < 9.3×10⁻⁸ @ 95%CL

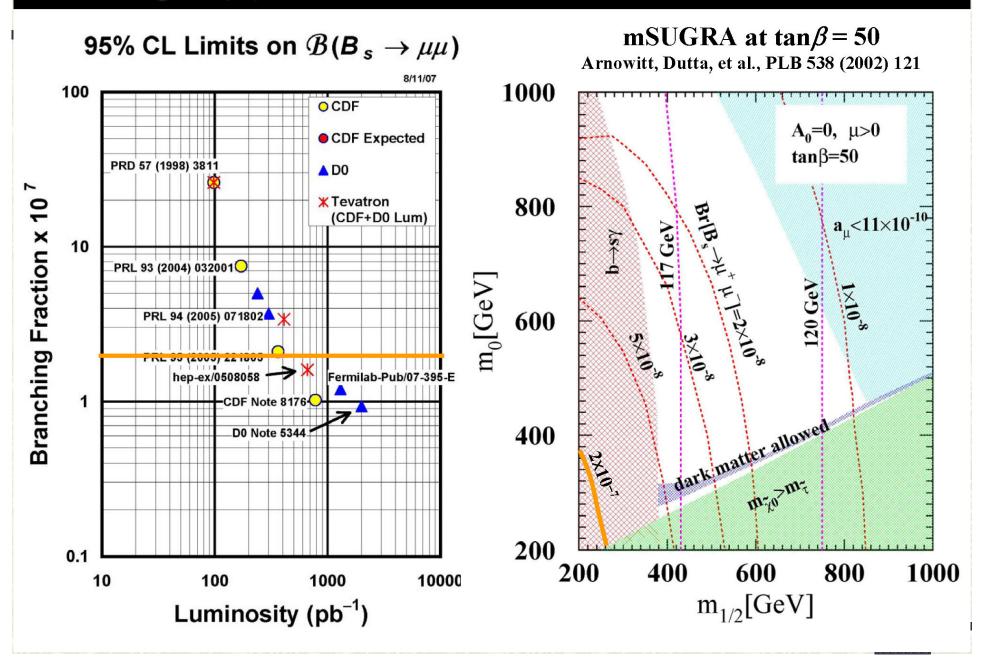

95% CL Limits on $\mathcal{B}(B_s \to \mu\mu)$

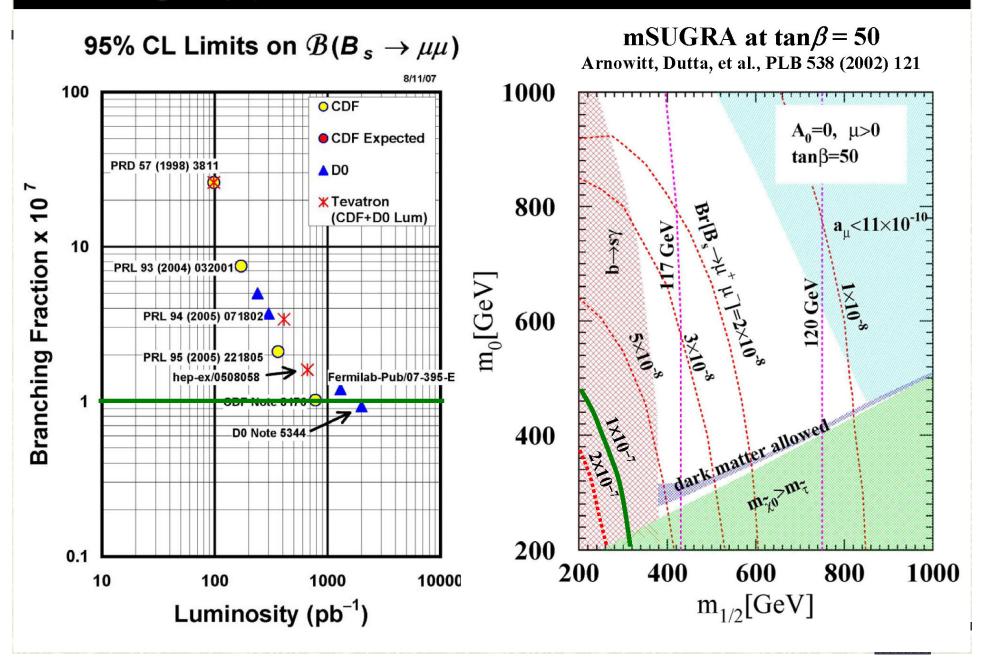


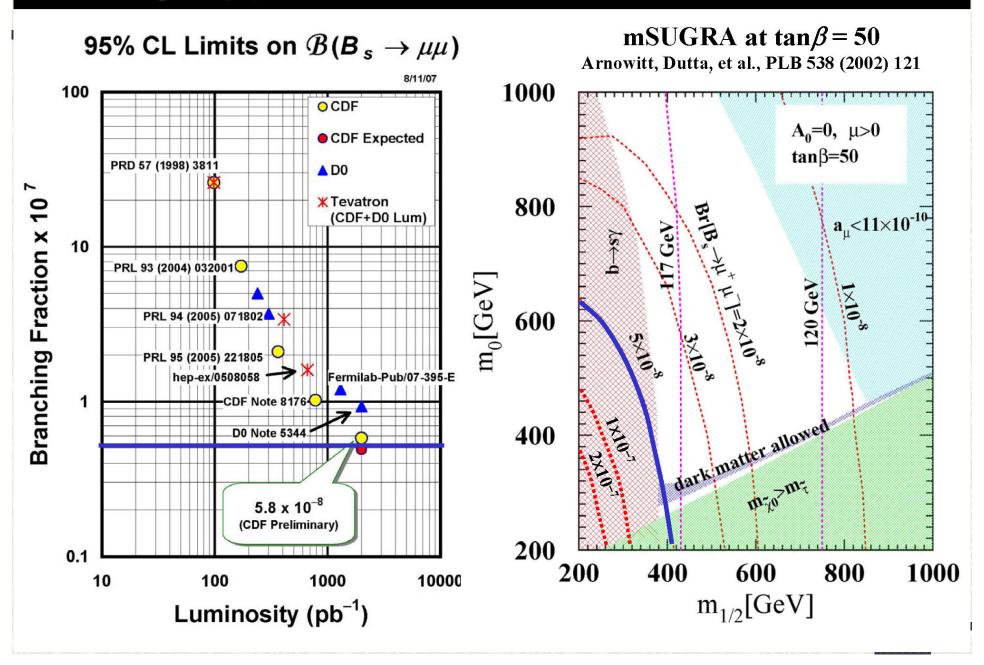
SO(10) Grand Unification Model

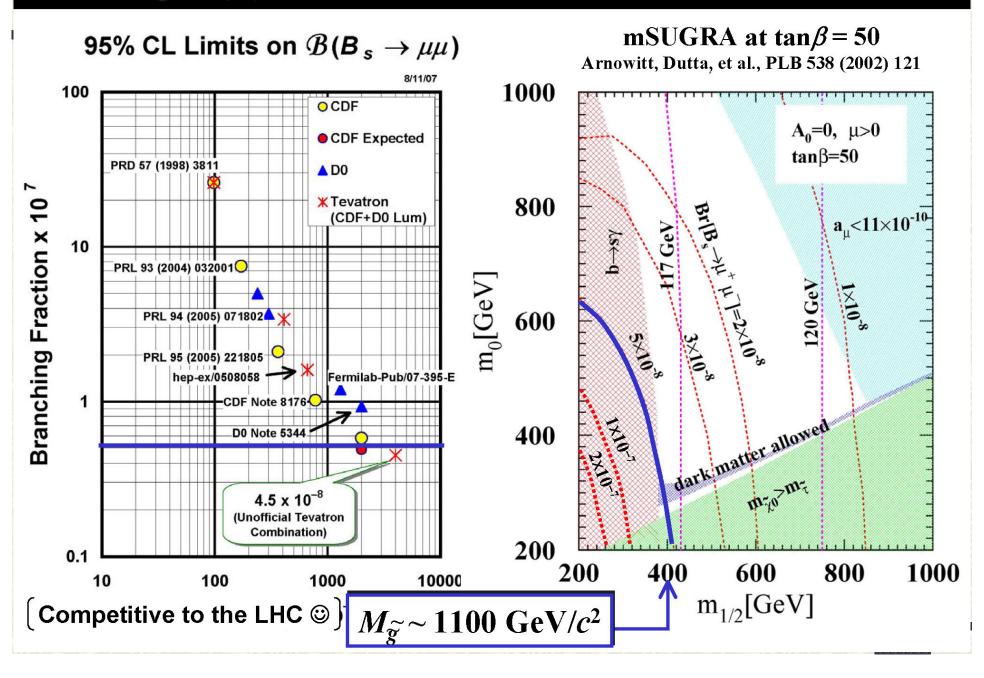
R. Dermisek *et al.*, hep-ph/0507233 (2005)

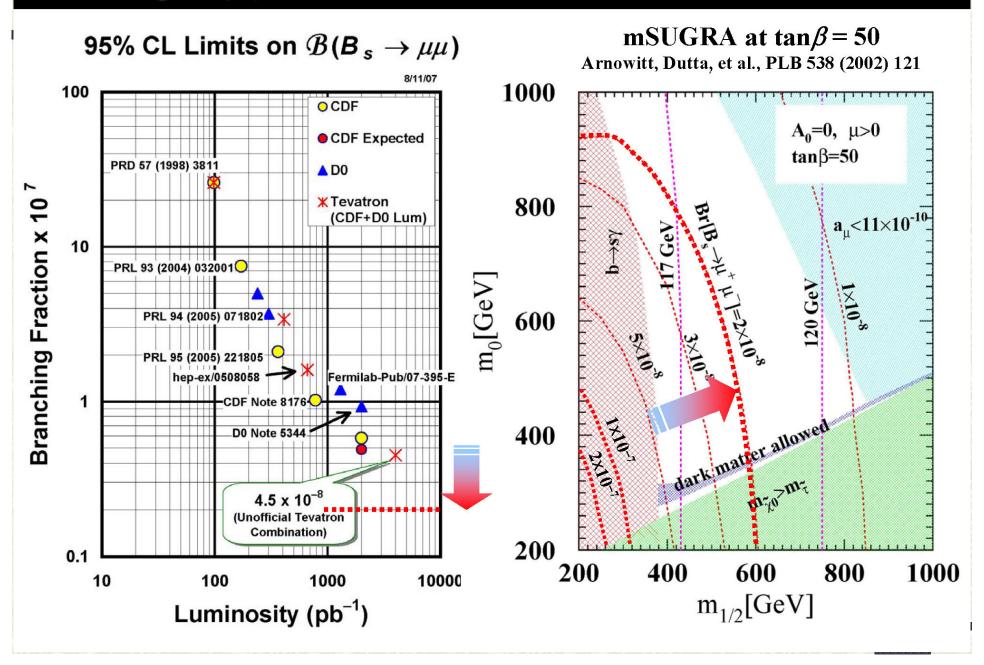
Pink regions are excluded by either theory or experiments

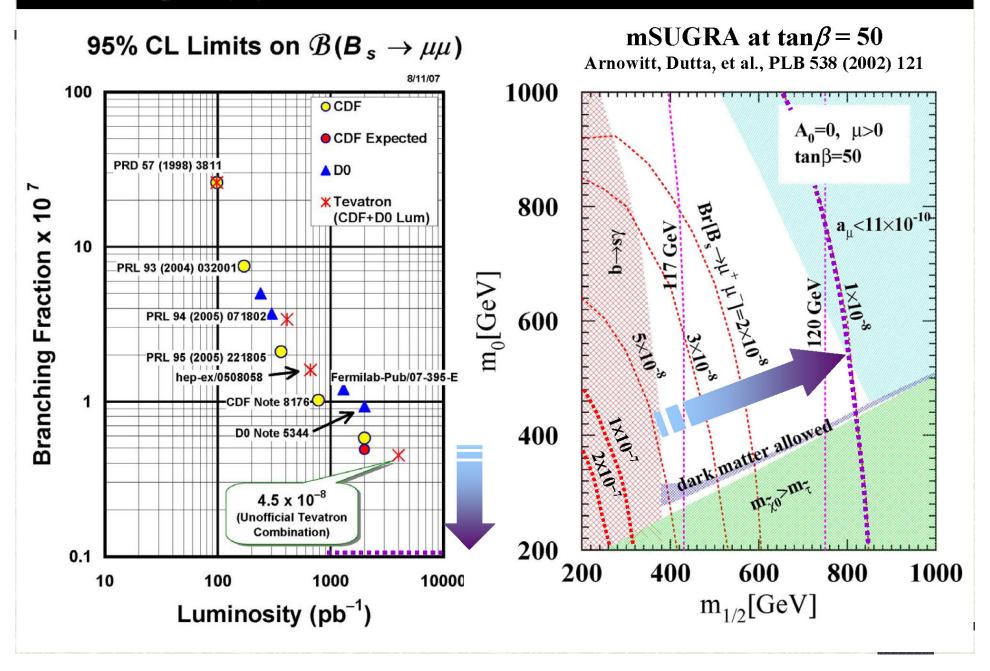

Green region is the WMAP preferred region Blue dashed line is the Br(Bs \rightarrow µµ) contour Light blue region excluded by old Bs \rightarrow µµ analysis

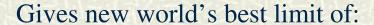

Michael Weinberger tan(β)~50 constrained by unification of Yukawa couplings

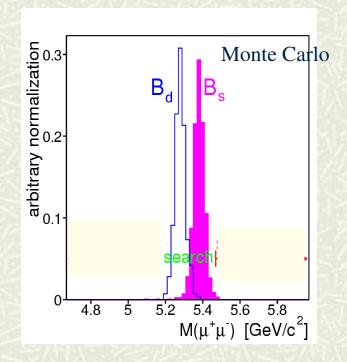

Our old result
New Limit


Texas A&M


15







B_d->μμ Results at CDF

- \blacksquare CDF's analysis is also sensitive to B_d - $>\mu\mu$
 - Due to excellent mass resolution
 - ~25 MeV/c²
- **■** Expected limit 1.3 x 10⁻⁸ at 90% confidence level

$$BR(B_d \to \mu^+ \mu^-) < 1.5 \times 10^{-8} (1.8 \times 10^{-8}) \text{ at } 90\% (95\%) \text{ C.L.}$$

Search for B→µµh

- Non-resonant decays B → μμh via box or penguin diagrams
 - → new physics may be observable through interference with SM amplitudes
- ➤ Already observed (BaBar, Belle):

$$\triangleright B_u \rightarrow \mu\mu K$$

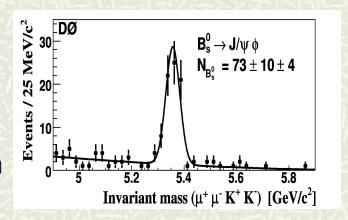
 $\triangleright B_d \rightarrow \mu\mu K^*$

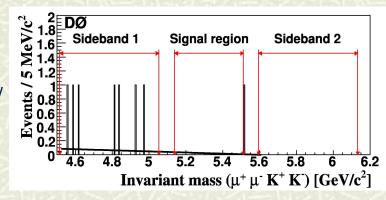
PRD 73, 092001 (2006) PRL 96, 251801 (2006)

>Missing:

 $\triangleright B_s \rightarrow \mu\mu \phi$

 \triangleright prediction: BR(B_s → μμφ)=1.6x10⁻⁶

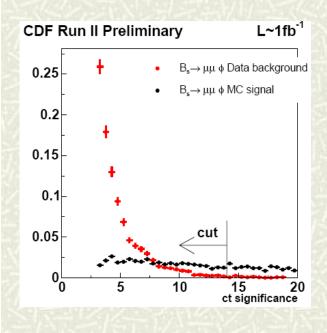

C.Q. Geng and C.C. Liu, J. Phys. G 29, 1103 (2003)

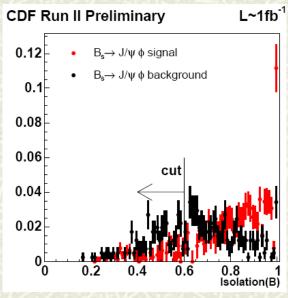

Search Methodology

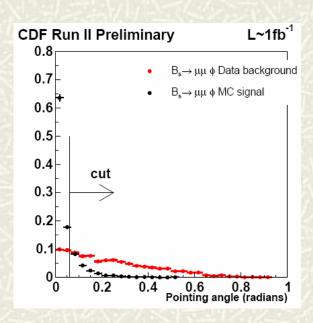
- \triangleright Similar method as used for B_s $\rightarrow \mu\mu$
- Unbiased (blinded) selection optimization using
 - signal event sample: MC simulation
 - background sample: data sidebands
- > Normalize to analogous resonant B \rightarrow J/ ψ h decay

$$\frac{BR(B \to \mu^{+}\mu^{-}h)}{BR(B \to J/\psi h) \cdot BR(J/\psi \to \mu^{+}\mu^{-})} = \frac{N_{\mu\mu h}}{N_{J/\Psi h}} \frac{\mathcal{E}_{J/\Psi h}^{total}}{\mathcal{E}_{\mu\mu h}^{total}}$$

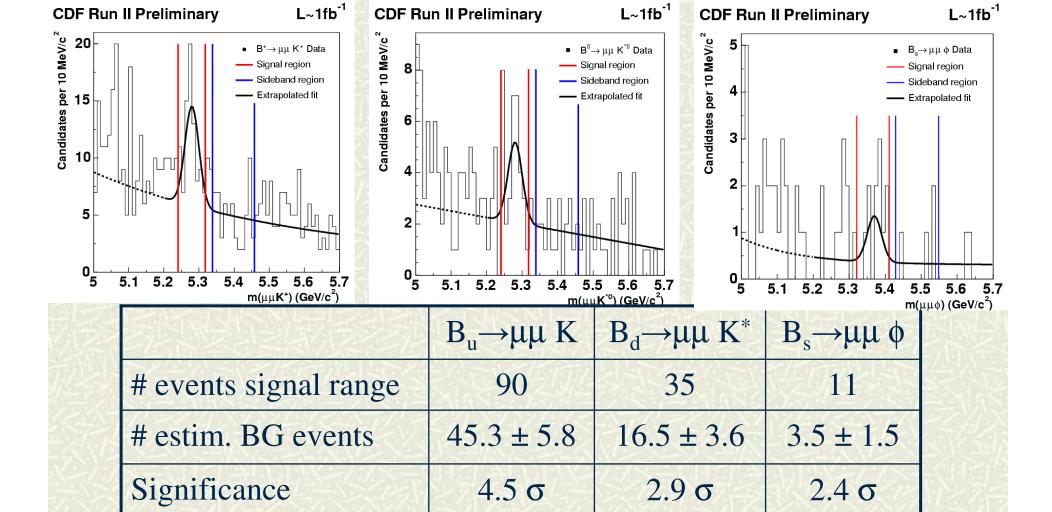
- Apply cuts on search mode and normalization mode
- \triangleright Remove resonant μμ by cutting out J/ψ / $\psi(2S)$ mass ranges
- > Unblind

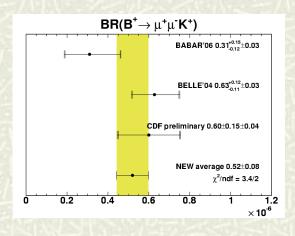


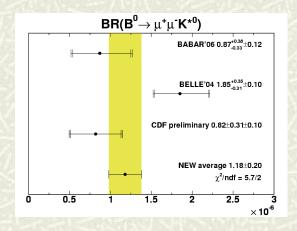



Selection Strategy

Optimize selection based on cuts on similar quantities as used for $B_s \rightarrow \mu\mu$ (decay length, isolation, pointing angle)

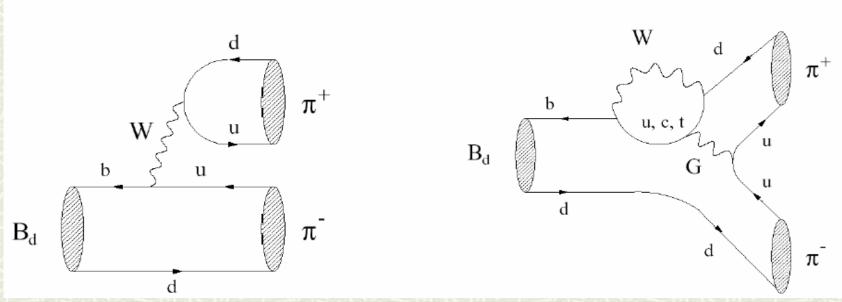

Optimize on best value for $\frac{S}{\sqrt{S+S}}$



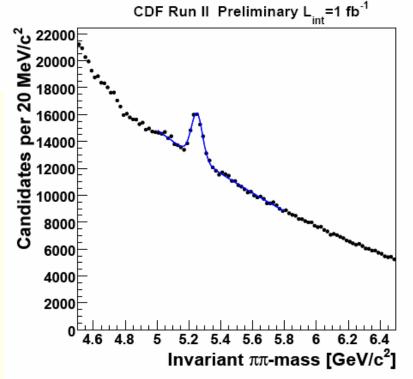

Observations

Results (World's Best)

BR(B⁺
$$\rightarrow \mu\mu$$
 K⁺) = [0.72 ± 0.15(stat.) ± 0.05(syst.)]x10⁻⁶ BR(B⁰ $\rightarrow \mu\mu$ K^{*}) = [0.82 ± 0.31(stat.) ± 0.10(syst.)]x10⁻⁶


- **D0:** $\frac{BR(B_s \to \mu^+ \mu^- \phi)}{BR(B_s \to J/\psi \phi)} < 4.4 \cdot 10^{-3} @ 95\% C.L. \quad 0.45 \text{ fb}^{-1}$
- CDF: $\frac{BR(B_s \to \mu^+ \mu^- \phi)}{BR(B_s \to J/\psi \phi)} < 2.61 \cdot 10^{-3} @ 95\% C.L.$ 1 fb⁻¹

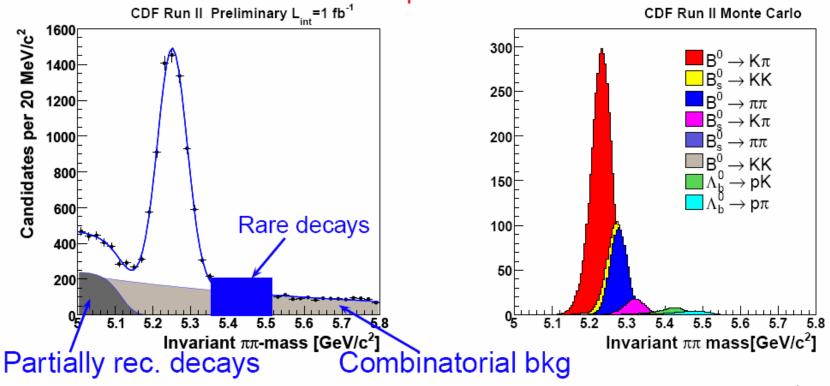
New World's Best Limit


B^0 , B_S , $\Lambda_b \rightarrow \pi\pi$, $K\pi$, KK

- •B→hh decays are the most used B decays for study of CPV because only two light bodies --> plenty of final states to measure same observables allowing multiple constraints on interesting parameters as CKM angle gamma.
- •The fact that penguin diagrams (bottom-right) participate gives sensitivity to new physics.
- •CDF already obtained important results such as: first observation of $B_s \rightarrow KK$, and measurement of direct CPV asymmetries in $B^0 \rightarrow K^+\pi^-$

$\mathbf{B} \to \mathbf{h}\mathbf{h}'$ Trigger

- Hard to trigger, only two "stable" hadrons in final state
- Exploit long lifetime of the B-hadrons



Confirm trigger cuts offline Peak already visible

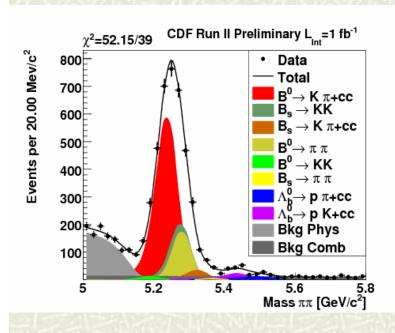
Disentangling modes

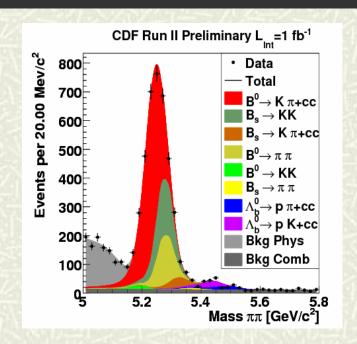
- Despite excellent mass resolution (≈ 22MeV/c²) different decays overlaps
- Event-by-event particle ID not sufficient to separate modes

Fit Yields

■ Large yields for known modes

Signal events:


$$B^0 \to \pi^+\pi^-$$
 1121 \pm 63 $B^0 \to K^+\pi^-$ 4045 \pm 84 $B_s \to K^+K^-$ 1307 \pm 64


$\dfrac{\mathcal{B}(B^0\! o\!\pi^+\pi^-)}{\mathcal{B}(B^0\! o\!K^+\pi^-)}$	$0.259 \pm 0.017 \pm 0.016$
$\mathcal{B}(B^0 o \pi^+\pi^-)$	$(5.10 \pm 0.33 \pm 0.36) \cdot 10^{-6}$
$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s \to K^+ K^-)}{\mathcal{B}(B^0 \to K^+ \pi^-)}$	$0.324 \pm 0.019 \pm 0.041$
$\mathcal{B}(B_s \to K^+K^-)$	$(24.4 \pm 1.4 \pm 4.6) \cdot 10^{-6}$

Three New Modes

$$B_s \to K^- \pi^+$$
 230 ± 34 ± 16 8 σ
 $\Lambda_b \to p \pi^-$ 110 ± 18 ± 16 6 σ
 $\Lambda_b \to p K^-$ 156 ± 20 ± 11 11 σ

First measurement of direct CP violating asymmetries in Λ_b —ph decays

$$\begin{split} A_{\rm CP}(\Lambda_b^0 \to p \pi^-) &= \frac{\mathcal{B}(\Lambda_b^0 \to p \pi^-) - \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p} \pi^+)}{\mathcal{B}(\Lambda_b^0 \to p \pi^-) + \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p} \pi^+)} \ = \ 0.03 \pm 0.17 \ (stat.) \pm 0.05 \ (syst.), \\ A_{\rm CP}(\Lambda_b^0 \to p K^-) &= \frac{\mathcal{B}(\Lambda_b^0 \to p K^-) - \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p} K^+)}{\mathcal{B}(\Lambda_b^0 \to p K^-) + \mathcal{B}(\overline{\Lambda}_b^0 \to \overline{p} K^+)} \ = \ 0.37 \pm 0.17 \ (stat.) \pm 0.03 \ (syst.). \end{split}$$

First measurement of Branching Ratios in $\Lambda_b \rightarrow ph$ decays

$$\frac{\sigma(p\bar{p} \to \Lambda_b^0 X, p_T > 6 \text{ GeV/}c)}{\sigma(p\bar{p} \to B^0 X, p_T > 6 \text{ GeV/}c)} \frac{\mathcal{B}(\Lambda_b^0 \to p\pi^-)}{\mathcal{B}(B^0 \to K^+\pi^-)} = 0.0415 \pm 0.0074 \text{ (stat.)} \pm 0.0058 \text{ (syst.)}$$

$$\frac{\sigma(p\bar{p} \to \Lambda_b^0 X, p_T > 6 \text{ GeV/}c)}{\sigma(p\bar{p} \to B^0 X, p_T > 6 \text{ GeV/}c)} \frac{\mathcal{B}(\Lambda_b^0 \to pK^-)}{\mathcal{B}(B^0 \to K^+\pi^-)} = 0.0663 \pm 0.0089 \text{ (stat.)} \pm 0.0084 \text{ (syst.)}.$$

Using Br(B \rightarrow K⁺ π ⁻) and ratios of fragmentation functions, can extract Λ_b branching ratios:

$$\begin{split} \mathcal{B}(\Lambda_b^0 \to p\pi^-) = & (3.1 \pm 0.6 \ (stat.) \pm 0.7 \ (syst.)) \times 10^{-6}, \\ \mathcal{B}(\Lambda_b^0 \to pK^-) = & (5.0 \pm 0.7 \ (stat.) \pm 1.0 \ (syst.)) \times 10^{-6}. \end{split}$$

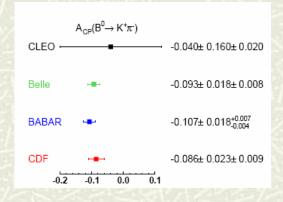
PDG fragmentation functions

$$\begin{split} \mathcal{B}(\Lambda_b^0 \to p\pi^-) = & (1.4 \pm 0.2 \ (stat.) \pm 0.6 \ (syst.)) \times 10^{-6}, \\ \mathcal{B}(\Lambda_b^0 \to pK^-) = & (2.2 \pm 0.3 \ (stat.) \pm 1.0 \ (syst.)) \times 10^{-6}. \end{split}$$

CDF fragmentation functions

All results agree with the Standard Model Predictions

First Observation and BR Measurement of $B_S \rightarrow K\pi$


$$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s \to K^- \pi^+)}{\mathcal{B}(B^0 \to K^+ \pi^-)} = 0.066 \pm 0.010 \pm 0.010$$

Using input from HFAG

$$\Rightarrow \mathcal{B}(B_s \to K^-\pi^+) = (5.0 \pm 0.75 \pm 1.0) \cdot 10^{-6}$$

Direct CP Violation

$$A_{\text{CP}} = \frac{N(\overline{B}^{0} \to K^{-}\pi^{+}) - N(B^{0} \to K^{+}\pi^{-})}{N(\overline{B}^{0} \to K^{-}\pi^{+}) + N(B^{0} \to K^{+}\pi^{-})}$$
$$= -0.086 \pm 0.023 \pm 0.009$$

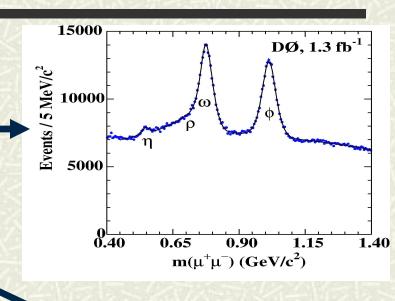
$$A_{CP} = \frac{N(\overline{B}_s \to K^+\pi^-) - N(B_s \to K^-\pi^+)}{N(\overline{B}_s \to K^+\pi^-) + N(B_s \to K^-\pi^+)}$$

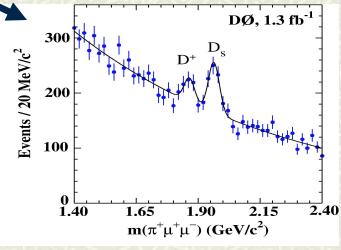
= +0.39 \pm 0.15 \pm 0.08

- Only significant difference in K⁺/K⁻ interaction with material
- Calibrate with $D^0 \to h^+h^-$ with assumption $A_{\rm CP}(D^0 \to K\pi) = 0$
- Dominant systematic uncertainty
 - Particle ID model
 - WA B meson masses

- First indication of CP violation in B_s system
- Sign and size agree with SM expectation
- ⇒ No evidence for 'exotic' sources of CP violation
- Will repeat with more data (already 2.5fb⁻¹ on tape)

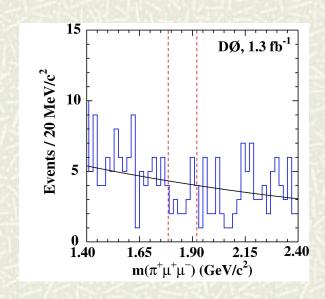
 2.5σ Significance


FCNC D Decays at D0


General Description

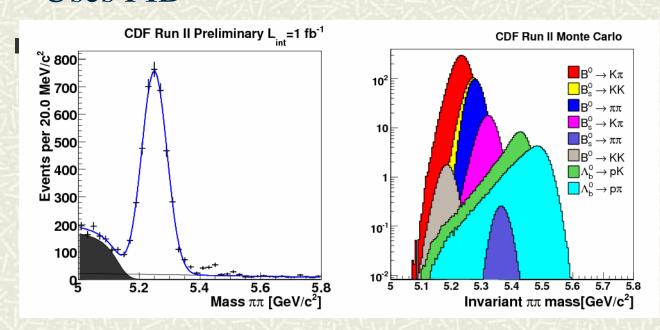
- ★ Another place where the SM is highly suppressed and a signal would be indication of new physics
- # Uses 1.3 fb-1
- **#** Search for D_S^+ and $D^+ \rightarrow \phi \pi^+ \rightarrow \mu \mu \pi^+$
- **#** Also looks at continuum decay D +→ $\mu\mu\pi$ + away from φ resonance
- **SM** predictions at 10⁻⁹

Methodology for Direct Decay

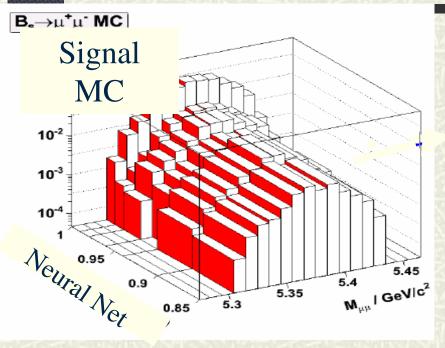

- **Uses** Dimuon trigger
- Reconstruct the dimuon spectrum
- # Add in track
 - Use long lifetime properties to separate signal from background
 - Also uses kinematic properties of decay
 - Fits of daughters and decay angles

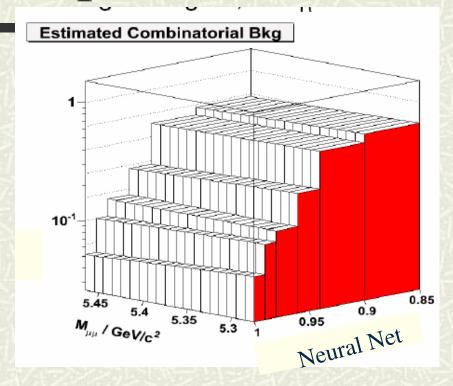
Continuum D $^+ \rightarrow \mu\mu\pi^+$

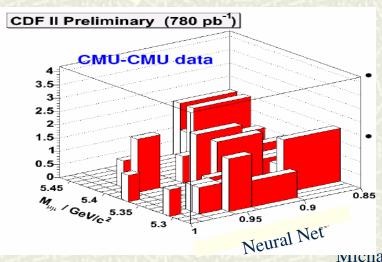
- **■** Exclude 0.96 < Mass($\mu\mu\pi^+$) < 1.06 resonant peak
- Use same cuts as resonant decays, add in isolation
- **■** 19 signal events seen
- **■** Sideband background => 25.8+-4.6
- **■** Probability of background fluctuation is 14%
- **■** Set limit on D $^+$ $\rightarrow \phi \pi^+ \rightarrow \mu \mu \pi^+$
 - Br = 3.9×10^{-6} at 90% c.1. New World's best limit


Conclusions

- Rare decays are highly suppressed in the SM allowing for very sensitive probes of new physics at the Tevatron
- ➡ A lot of work is being done to improve the analyses, in addition to just adding luminosity, to push closer to the SM predictions


Backup Slides


Search for Λ_b


- **■** No asymmetry previously seen in hadron decays
- # Uses unbinned multivariate Likelihood fit
 - Uses PID

2D Fitter (an example)

B->hh is calculated and added to plot before fitting

Expected Bkg vs Observed Events

- •For B_S signal window
- •Bkg includes B->hh backgrounds
- •Combine all bins in a 2d fit

CMU-CMU

	Mass Bin (GeV)	5.310-5.334	5.334 - 5.358	5.358-5.382	5.382 - 5.406	5.406-5.430
NN bin 0.80-0.95	Expected BKG	4.9 ± 0.3	4.8 ± 0.3	4.7 ± 0.3	4.6 ± 0.3	4.5 ± 0.3
	Observed	3	3	7	3	2
NN bin 0.95-0.995	Expected BKG	1.6 ± 0.2	1.6 ± 0.2	1.5 ± 0.2	1.5 ± 0.2	1.5 ± 0.2
	Observed 1	1	4	2	2	
NN bin 0.995-1.0	Expected BKG	0.43 ± 0.1	0.42 ± 0.1	0.41 ± 0.1	0.41 ± 0.1	0.41 ± 0.1
	Observed	0	1	1	0	0

CMU-CMX

	Mass Bin (GeV)	5.310-5.334	5.334-5.358	5.358-5.382	5.382-5.406	5.406 - 5.430
NN bin 0.80-0.95	Expected BKG	5.4 ± 0.4	5.3 ± 0.3	5.2 ± 0.3	5.1 ± 0.3	5.0 ± 0.3
	Observed	8	6	3	6	3
NN bin 0.95-0.99	Expected BKG	2.1 ± 0.2	2.1 ± 0.2	2.1 ± 0.2	2.0 ± 0.2	2.0 ± 0.2
	Observed	3	2	2	4	0
NN bin 0.995-1.0	Expected BKG	0.32 ± 0.09	0.31 ± 0.09	0.31 ± 0.09	0.31 ± 0.09	0.31 ± 0.09
	Observed 0	0	0	0	0	1