Lattice QCD Overview:
 Understanding Uncertainty Budgets

(Estimation, Cogitation, Remonstration)

Andreas Kronfeld

Lattice QCD Meets Experiment: 〈Lattice| |Experiment〉
Fermilab
April 26-27, 2010

Kinds of Uncertainty

- Quantitative:
- based on "theorems" and derived from (numerical) data;
- Semi-quantitative:
- based on "theorems" but insufficient data to make robust estimates;
- Non-quantitative:
- error exists but estimation is mostly subjective (or, hence, omitted);
- Sociological.

Sociology

- "Do you understand their error estimates? I don't."
- could say this after detailed study of the calculation in question;
- could say this just because you don't like the authors.
- Anecdote 1: Lepton-Photon Symposium, sometime in the last century.
- Anecdote 2: ILC-LHC apprehension vs. OPAL-D0 reality.
- My preferred criticism: "the calculation suffers from an uncertainty that is omitted from (underestimated in) the error budget."

Non-quantitative: Quenching Some or All Quarks

The Trouble with Determinants

- Early lattice-QCD calculations were carried out in the quenched approximation. What is it?
- The contribution of sea quarks is represented mathematically by the determinant of a huge matrix:
- computationally most demanding step in lattice QCD;
- quenching: set det = 1 (in early days also called valence approximation); notation: $n_{f}=N$ means N sea quarks with $\operatorname{det} \neq 1$.
- a dielectric idea: the brown muck is a frequency-dependent medium, approximated by a constant (absorbed into bare g_{8}^{2}).

Valence quarks, sea quarks, \& gluons

Quenched approximation appears in other contexts, e.g., Schwinger-Dyson equations in ladder approximation.

Quenching

- Short distances (large μ):
- universally incorrect running;
- arguably unimportant or correctable.
- Long distances (small μ):
- non-universal IR effects, e.g., $\alpha_{s}(1 / r)=-3 r^{2} F(r) / 4$ or "frozen" coupling.

Quenched vs. 2+1 Sea Quarks

HPQCD, MILC, Fermilab Lattice, hep-lat/0304004

Quenching charm

- Charm threshold lies above nonperturbative regime:
- expand $\operatorname{det}\left(D+m_{\mathrm{c}}\right)$ in ID/m;
- leads to $F_{\mu \nu} F^{\mu \nu}$ action;
- so shifts α_{s} (as is customary for b, t);
- real error $\propto \alpha_{s} \times\left(\Lambda / m_{c}\right)^{2}$.

Quenching strange

- Strange threshold lies in nonperturbative regime:
- $n_{f}=2$ better than $n_{f}=0$;
- still hard to estimate;
- sometimes ~5\%;
- sometimes no change, e.g., Ω mass.

- Caution: many, if not most, quenched calculations contain no estimates of the associated error.
- Caution: many, if not most, $n_{f}=2$ calculations contain no estimates of the error associated with quenching the strange sea.
- Statement of philosophy: "I see no sensible and reliable way to estimate the effect of the strange sea. Many examples show practically no influence from it. This is a puzzle ."
- "Differences $\left[\right.$ in $f_{D s}$ with $n_{f}=2$ and $\left.n_{f}=2+1\right]$ could be due to other effects."
- We report; you decide.
- Caution: no $n_{f}=2+1$ calculations contain hard estimates of the error associated with omitting the charmed sea: 0.1% or 0.5% or 1% or 5% ?

Rooted Staggered Fermions

- Many 2+1 calculations use staggered fermions [Susskind, 1977] for quarks.
- Computationally swiftest way to incorporate determinant, but extra four-fold replication of species "tastes". Ansatz [Hamber et al., 1983]:

$$
\left[\operatorname{det}_{4}\left(D_{\text {stag }}+m\right)\right]^{1 / 4} \stackrel{?}{=} \operatorname{det}_{1}(D D+m)
$$

- Extra tastes lead at $a \neq 0$ to violations of unitarity, reducing to physical system as a $\rightarrow 0$, handled with a version of chiral perturbation theory:
- if correct, error incorporated into "chiral extrapolation error";
- if incorrect, the error is, like quenching, non-quantitative (caveat emptor: there are several incorrect arguments about incorrectness).

Semi-quantitative Errors

Errors Estimated Semi-quantitatively

- Sometimes the (numerical) data are insufficient to estimate robustly an uncertainty:
- the statistical quality is not good enough;
- the range of parameters is not wide enough;
- try this, that, and the other fit; cogitate; repeat.
- These cases are a limiting case of errors estimated quantitatively, so are discussed later in the talk.

Errors Estimated Semi-quantitatively 2

- Perturbative matching (a class of discretization effect):
- estimate error from truncating PT with the same "reliability" as in continuum pQCD;
- multi-loop perturbative lattice gauge theory is daunting.
- nonperturbative matching, where feasible, fixes this.
- Heavy-quark discretization effects:
- theory says $\alpha_{\mathrm{s}}^{l+1} b_{l}^{[l+1]}\left(a m_{\mathrm{q}}\right) a^{n}\left\langle O_{i}\right\rangle \sim \alpha_{\mathrm{s}}^{l+1} b_{t^{[+1]}}\left(a m_{\mathrm{q}}\right)(a \Lambda)^{n}$;
- for each LHQ action, know asymptotics of b_{i}, but not $b^{[l+1]}\left(a m_{\mathrm{q}}\right)$.

Quantitative Errors: Statistics

Lattice Gauge Theory

- Infinite continuum: uncountably many d.o.f.
- Infinite lattice: countably many; used to define QCD
- Finite lattice: can evaluate integrals

$L=N_{S} a$

Monte Carlo Integration with Importance Sampling

- Estimate integral as a sum over randomly chosen configurations of U :

$$
\begin{aligned}
\langle\bullet\rangle & =\frac{1}{Z} \int \mathcal{D} U \operatorname{det}(\not D+m) \exp (-S)\left[\bullet^{\prime}\right] \\
& \approx \frac{1}{C} \sum_{c=0}^{C-1} \bullet^{\prime}\left[U^{(c)}\right]
\end{aligned}
$$

where $\left\{U^{(c)}\right\}$ is distributed with probability density $\operatorname{det}(\not D+m) \exp (-S)$; often called "simulation," although this may be an abuse of language.

- Sum converges to desired result as ensemble size $C \rightarrow \infty$.
- With $C<\infty$, statistical errors and correlations between, say, $G(t)$ and $G(t+a)$.

n-Point Functions

Corfelators Yield Masses \& Matrix Elements

- Two-point functions for masses $\pi(t)=\bar{\psi}_{u} \gamma_{5} S \psi_{d}$:

$$
\left.G(t)=\left\langle\pi(t) \pi^{\dagger}(0)\right\rangle=\sum_{n}|\langle 0| \hat{\pi}| \pi_{n}\right\rangle\left.\right|^{2} \exp \left(-m_{\pi_{n}} t\right)
$$

- Two-point functions for decay constants:

$$
\left\langle J(t) \pi^{\dagger}(0)\right\rangle=\sum_{n}\langle 0| \hat{J}\left|\pi_{n}\right\rangle\left\langle\left\langle\pi_{n}\right| \hat{\pi}^{\dagger} \mid 0\right\rangle \exp \left(-m_{\pi_{n}} t\right)
$$

- Three-point functions for form factors, mixing:

$$
\begin{aligned}
\left.\left\langle\pi(t) J(u) B^{\dagger}(0)\right\rangle=\sum_{m n}\langle 0| \hat{\pi}\left|\pi_{m}\right\rangle\right\rangle & \left.\left\langle\pi_{n}\right| \hat{J}\left|B_{m}\right\rangle\right\rangle
\end{aligned}\left\langle B_{m}\right| \hat{B}^{\dagger}|0\rangle,
$$

Central Limit Theorem

- Thought simulation: generate many ensembles of size C. Observables $\langle\bullet\rangle$ are Gaussian-distributed around true value, with $\left\langle\sigma^{2}\right\rangle \sim C^{-1}$.
- Inefficient use of computer to generate many ensembles (make ensemble bigger; run at smaller lattice spacing; different sea quark masses; ...).
- Generate pseudo-ensembles from original ensemble:
- jackknife: omit each individual configuration in turn (or adjacent pairs, trios, etc.) and repeat averaging and fitting; estimate error from spread;
- bootstrap: draw individual configurations at random, allowing repeats, to make as many pseudo-ensembles of size C as you want.
- A further advantage of Jackknife and Bootstrap is that they can be wrapped around an arbitrarily complicated analysis.
- In this way, correlations in the statistical error can be propagated to ensemble properties with a non-linear relation to the n-point functions.
- masses are an example: $m \approx \ln \left(G_{t+\alpha} / G_{t}\right)$;
- as a consequence, everything else, from amputating legs with $\mathrm{Ze}^{-m t}$.
- Thus, each mass or matrix element is an ordered pair-(central value, bootstrap distribution); understand all following arithmetic this way.

Error Bars and Covariance Matrix

- Errors on the n-point functions are determined from the ensemble:

$$
\sigma^{2}(t)=\frac{1}{C-1}\left[\langle G(t) G(t)\rangle-\langle G(t)\rangle^{2}\right]
$$

- Similarly for the covariance matrix:

$$
\sigma^{2}\left(t_{1}, t_{2}\right)=\frac{1}{C-1}\left[\left\langle G\left(t_{1}\right) G\left(t_{2}\right)\right\rangle-\left\langle G\left(t_{1}\right)\right\rangle\left\langle G\left(t_{2}\right)\right\rangle\right]
$$

- Minimize

$$
\chi^{2}(\boldsymbol{m}, \boldsymbol{Z})=\sum_{t_{1}, t_{2}}\left[G\left(t_{1}\right)-\sum_{n} Z_{n} e^{-m_{n} t_{1}}\right] \sigma^{-2}\left(t_{1}, t_{2}\right)\left[G\left(t_{2}\right)-\sum_{n} Z_{n} e^{-m_{n} t_{2}}\right]
$$

to obtain masses, m_{n}, and matrix elements, Z_{n}, for few lowest-lying states.

Data Reduction

- Computing a hadron n-point function from a lattice gauge field represents a huge data reduction.
- We consider an ensemble pretty big if it has 500 (independent) configurations.
- Reduce to a function with 20 discrete values: $20 \ll 500 \times 20 / 4$.
- But now fit, using the statistical correlation among the function values: alas, $20 \times 20 \ll 500 \times 20 / 4$.
- Now correlate this function with others (e.g., one for mass, one for matrix element; several final-state momenta for a form factor).

Constrained Curve-Fitting

- The fits to towers of states are the first of many fits, in which a series is a "theorem" (here a genuine theorem).
- Figuring out fit ranges and where to truncate is a bit of a dark art.
- More recently, some groups have been assigning Bayesian priors to higher terms in the series, fitting

$$
\boldsymbol{\chi}_{\text {aug }}^{2}=\chi^{2}(\boldsymbol{G} \mid\{\boldsymbol{Z}, \boldsymbol{m}\})+\chi^{2}(\{\boldsymbol{Z}, \boldsymbol{m}\})
$$

- Anything with "Bayesian" in it can lead to long discussions, often fruitless.
- Key observation is that decisions where to truncate are priors: indeed extreme ones, $\delta\left(Z_{n}=0\right)$ or $\delta\left(m_{n}=\infty\right), n>s$. Choosing fit range is prior on data.

Quantitative Errors: Tuning

The Lagrangian

- $1+n_{f}+1$ parameters:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\frac{1}{g_{0}^{2}} \operatorname{tr}\left[F_{\mu \nu} F^{\mu \nu}\right] & & r_{1} \text { or } m_{\Omega} \text { or } \mathrm{Y}(2 \mathrm{~S}-1 \mathrm{~S}) \ldots \\
& -\sum_{f} \bar{\psi}_{f}\left(\not \supset \mathrm{D}+m_{f}\right) \psi_{f} & & m_{\pi}, m_{K}, m_{\mathrm{J} / \psi}, m_{\mathrm{Y}}, \ldots \\
& +\frac{i \theta}{32 \pi^{2}} \varepsilon^{\mu \nu \rho \sigma} \operatorname{tr}\left[F_{\mu \nu} F_{\rho \sigma}\right] & & \theta=0 .
\end{aligned}
$$

- Fixing the parameters is essential step, not a loss of predictivity.
- Length scale $r_{1}: r^{2} F\left(r_{1}\right)=1$ (from static potential): need other inputs too.
- Statistical and systematic uncertainties propagate from fiducials to others.

Quantitative Errors: Effective Field Theories

review: hep-lat/0205021

Yesterday's Output is Today's Input

- After running the Monte Carlo a few years, accumulating zillions of files with n-point functions, and spending a couple months fitting them into zillions more files with masses and matrix element, the real work can begin.
- The (numerical) data are generated for a sequence of
- lattice spacing;
- spatial volume;
- light quark masses;
- heavy quark masses.

Many Scales in Lattice QCD

QCD scales

Yesterday's Output is Today's Input

- After running the Monte Carlo a few years, accumulating zillions of files with n-point functions, and spending a couple months fitting them into zillions more files with masses and matrix element, the real work can begin.
- The (numerical) data are generated for a sequence of
- lattice spacing;
- $a \rightarrow 0$ with Symanzik EFT;
- light quark masses;
- $m_{\pi}^{2} \rightarrow(140 \mathrm{MeV})^{2}$ with chiral PT;
- spatial volume;
- heavy quark masses;
- massive hadrons $\oplus \chi \mathrm{PT}$;
- HQET and NRQCD.

Symanzik Effective Field Theory

- An outgrowth of the "Callan-Symanzik equation"

$$
\frac{d \alpha_{s}\left(\mu^{2}\right)}{d \mu^{2}}=-\beta_{0} \alpha_{s}^{2}\left(\mu^{2}\right)-\beta_{1} \alpha_{s}^{3}\left(\mu^{2}\right)-\cdots
$$

is Symanzik's theory of cutoff effects.

- Applied to lattice gauge theory (e.g., QCD)

$$
\mathcal{L}_{\mathrm{LGT}} \doteq \mathcal{L}_{\mathrm{Sym}}=\mathcal{L}_{\mathrm{QCD}}+\sum_{i} a^{\operatorname{dim} \mathcal{L}_{i}-4} \mathcal{L}_{i}\left(g^{2}, m a ; \mu\right) \mathcal{L}_{i}
$$

where RHS is a continuum field theory with extra operators to describe the cutoff effects. Pronounce \doteq as "has the same physics as".

- Data in computer: $\mathcal{L}_{\text {LGT. }}$ Analysis tool: $\mathcal{L}_{\text {sym }}$.

Symanzik Effective Field Theory 2

- The Symanzik LE \mathcal{L} helps in (at least) three ways:
- a semi-quantitative estimate of discretization effects $-a^{n}\left\langle\mathcal{L}_{i}\right\rangle \sim(a \Lambda)^{n}$;
- a theorem-based strategy for continuum extrapolation: a^{n} (beware the anomalous dimension in $\mathcal{K}_{i}!$;
- a program (the "Symanzik improvement program") for reducing latticespacing dependence: if you can reduce the leading \mathcal{K}_{i} in one observable, it is reduced for all observables:
- perturbative $-\mathcal{K}_{i} \sim \alpha_{s}^{l+1}$; nonperturbative $-\mathcal{K}_{i} \sim a$.

Exceptional Continuum Extrapolation: B_{K}

quenched

$B_{k}(N D R, 2 G e V)$ vs. $m_{\rho} a$
$q^{*}=1 / \mathrm{a}$, 3-loop coupling, 5 points

Chiral Perturbation Theory

- Chiral perturbation theory [Weinberg, Gasser \& Leutwyler] is a Lagrangian formulation of current algebra.
- A nice physical picture is to think of this as a description of the pion cloud surrounding every hadron:

$$
\mathcal{L}_{\mathrm{QCD} \text { or Sym }} \doteq \mathcal{L}_{\mathrm{XPT}}
$$

where the LHS is a QFT of quarks and gluons, and the RHS is a QFT of pions (and, possibly, other hadrons).

- Theoretically efficient: QCD's approximate chiral symmetries constrain the interactions on the RHS. Unconstrained: the couplings on the RHS.
- RHS can include (symmetry-breaking) terms to describe cutoff effects.

Typical Chiral Extrapolation: B_{k}

Aubin, Laiho, Van de Water, arXiv:0905.3947

Finite-Volume Effects as Error

- All indications (i.e., experiment, LGT) are that QCD is a massive field theory.
- A general result for static quantities in massive field theories trapped in a finite box with $\mathrm{e}^{i \theta \text {-periodic boundary conditions [Lüscher, 1985]: }}$

$$
M_{n}(\infty)-M_{n}(L) \sim g_{n \pi} \exp \left(- \text { const } m_{\pi} L\right)
$$

so once $m_{\pi} L \gtrsim 4$ or so, these effects are negligible.

- For two-body states, the situation is more complicated, and more interesting.
- Volume-dependent energy shift encode information about resonance widths and final-state phase shifts (cf. Norman Christ's talk, tomorrow).

Finite-Volume Effects as Technique

- When finite-volume effects are well-described by $\chi \mathrm{PT}$, the finite-volume, even small-volume, data can be used to determine the couplings of the GasserLeutwyler Lagrangian.
- Several regimes:
- p-regime: $1 \sim L m_{\pi} \ll L \Lambda$ (usual pion cloud, squeezed a bit);
- ε-regime: $L m_{\pi} \ll 1 \ll L \Lambda$ (pion zero-mode nonperturbative).
- Review: S. Necco, arXiv:0901.4257.

Heavy Quarks

- For heavy quarks on current lattices, $m_{Q} a \ll 1$, worry about errors $\sim\left(m_{Q} a\right)^{n}$.
- Heavy-quark symmetry to the rescue:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} \doteq \mathcal{L}_{\mathrm{HQ}} & =\sum_{s} m_{Q}^{-s} \sum_{i} \mathcal{C}_{i}^{(s)}(\mu) \mathcal{O}_{i}^{(s)}(\mu) \\
& =\bar{h}_{v}\left[v \cdot D+m Z_{m}(\mu)\right] h_{v}+\frac{\bar{h}_{v} D_{\perp}^{2} h}{2 m Z_{m}(\mu)}+\cdots \\
\mathcal{L}_{\mathrm{LGT}} \doteq \mathcal{L}_{\mathrm{HQ}(a)} & =\sum_{s} m_{Q}^{-s} \sum_{i} \mathcal{C}_{i}^{(s)}\left(m_{Q} a, c_{i} ; \mu\right) \mathcal{O}_{i}^{(s)}(\mu) \\
& =\bar{h}_{v}\left[v \cdot D+m_{1}(\mu)\right] h_{v}+\frac{\bar{h}_{v} D_{\perp}^{2} h_{v}}{2 m_{2}(\mu)}+\cdots \\
& =\sum_{s} a^{s} \sum_{i} \overline{\mathcal{C}}_{i}^{(s)}\left(m_{Q} a, c_{i} ; \mu\right) \mathcal{O}_{i}^{(s)}(\mu)
\end{aligned}
$$

Heavy-quark Effective Field Theory

- Using HQET as a theory of cutoff effects helps in (at least) three ways:
- a semi-quantitative estimate of discretization effects $-b_{i} a^{n}\left\langle O_{i}\right\rangle \sim(a \Lambda)^{n}$;
- a theorem-based strategy for continuum extrapolation, although the $m_{Q} a$ dependence of the b_{i} makes this less easy than in Symanzik; cf. Claude Bernard's talk for an example with priors.
- a program for reducing lattice-spacing dependence: if you can reduce the leading b_{i} in one observable, it is reduced for all observables:
- perturbative $-b_{i} \sim \alpha_{s}^{l+1}$; nonperturbative $-b_{i} \sim a$ or $1 / m_{Q}$.

Summary

A Very Good Error Budget

(one omission)

stats

tuning
chiral
continuum

$$
\Delta_{q}=2 m_{D q}-m_{\eta c}
$$

	f_{K} / f_{π}	f_{K}	f_{π}	$f_{D_{s}} / f_{D}$	$f_{D_{s}}$	f_{D}	Δ_{s} / Δ_{d}
r_{1} uncerty.	0.3	1.1	1.4	0.4	1.0	1.4	0.7
a^{2} extrap.	0.2	0.2	0.2	0.4	0.5	0.6	0.5
Finite vol.	0.4	0.4	0.8	0.3	0.1	0.3	0.1
$m_{u / d}$ extrap.	0.2	0.3	0.4	0.2	0.3	0.4	0.2
Stat. errors	0.2	0.4	0.5	0.5	0.6	0.7	0.6
m_{s} evoln.	0.1	0.1	0.1	0.3	0.3	0.3	0.5
m_{d}, QED, etc.	0.0	0.0	0.0	0.1	0.0	0.1	0.5
Total \%	0.6	1.3	1.7	0.9	1.3	1.8	1.2
charmed sea	$<0.5 \% ?$						

Questions?

