Lattice Meets Experiment Workshop 2010

FNAL, April 26-27

Experimental Status of Semileptonic B Decays | Vcb | & | Vub |

Jochen Dingfelder Universität Freiburg

$B \rightarrow D\ell \nu$ and $B \rightarrow D^*\ell \nu$

Differential decay rate:

$$\frac{d\Gamma}{dw}(B \to D\ell\nu) \propto (\text{PhaseSpace}) |V_{cb}|^2 G(w)^2$$

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$$

$$\frac{d\Gamma}{dw}(B \to D^*\ell\nu) \propto (\text{PhaseSpace}) \; |V_{cb}|^2 \; F(w)^2 \sum_{i=+,0,-} |H_i(w)|^2$$

 All recent measurements have adopted the Form factor ansatz by Caprini et al.

$$G(w) = G(1)[1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3]$$

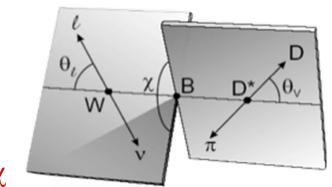
$$z=rac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w-1}+\sqrt{2}}$$

$$|V_{cb}| \times FF(w=1)$$

FF parameters: ρ_D for D, ρ_{D^*} , R_1 , R_2 for D^*

From Lattice

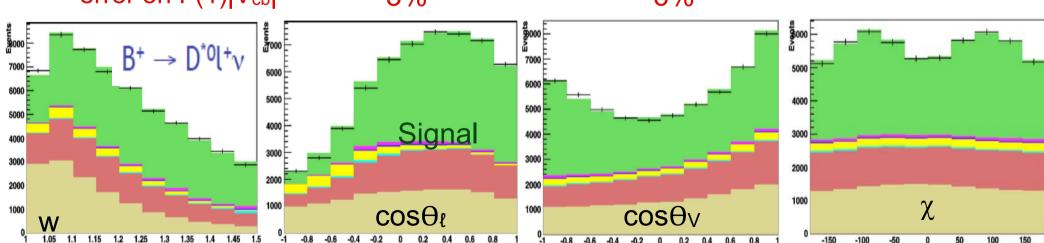
$$G(1) = 1.074 \pm 0.024$$
 (error ~2.2%)
Okamoto et al., NPPS 140, 461 (2005)


$$F(1) = 0.921 \pm 0.024$$
 (error ~2.6%)
C. Bernard et al., Phys. Rev. D79, 014506 (2009)

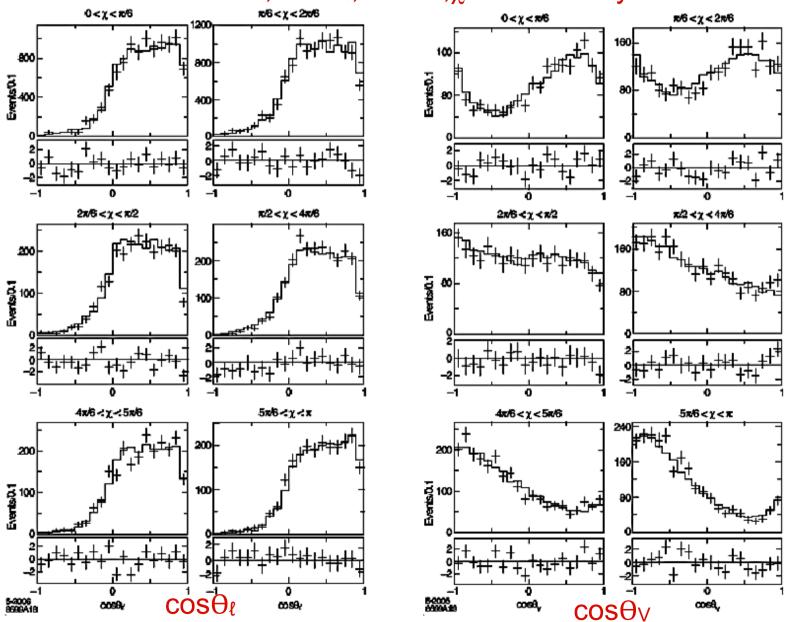
 $F(w) = \dots$

Study charged and neutral B decays:

- \rightarrow B⁰ \rightarrow D*- ℓ + ν , D*- \rightarrow D⁰ π -soft
- $B^+ \rightarrow D^{*0} \ell^+ \nu$, $D^{*0} \rightarrow D^0 \pi^0_{soft}$



	$B^0 o D^{*-}\ell u$	${\cal B}^+ o ar{{\cal D}}^{*0} \ell u$
ρ^2	$1.293 \pm 0.045 \pm 0.029$	$1.376 \pm 0.074 \pm 0.056$
$\mathcal{B}(B o D^*\ell^+ u_\ell)$	$(4.42 \pm 0.03 \pm 0.25)\%$	$(4.84 \pm 0.04 \pm 0.56)\%$
$\mathcal{F}(1) V_{cb} \times 10^3$	$34.4 \pm 0.2 \pm 1.0$	$35.0 \pm 0.4 \pm 2.2$
χ^2 /n.d.f.	138.8/155	187.8/155

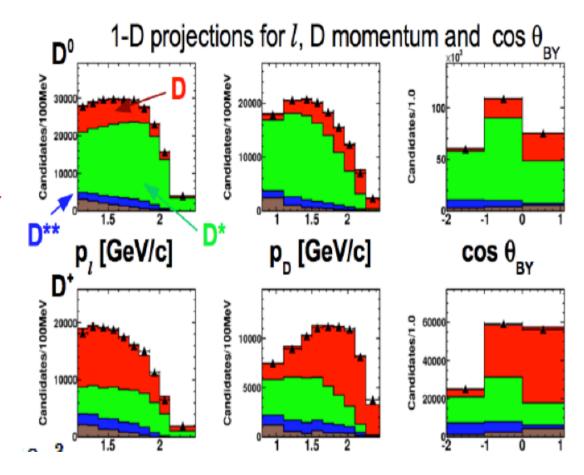

error on F(1)|V_{cb}|

~3%

~6%

Full 4-dim fit to w, $\cos \theta_{\ell}$, $\cos \theta_{\nu}$, $\chi \Rightarrow$ sensitivity to interference effects

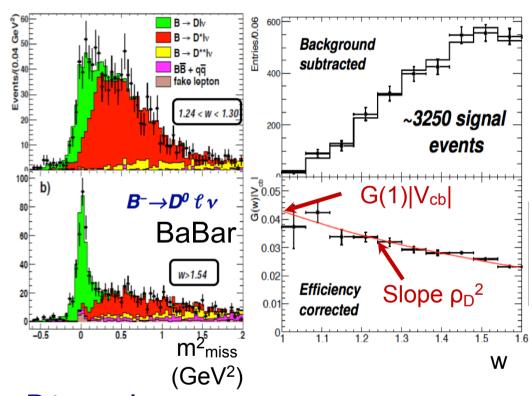
Projections for background subtracted data compared to fit result, for different intervals in χ;


Increased sensitivity to relative size of helicity terms: R1 and R2!

15,000 Events

Simultaneous $B \rightarrow D/D*\ell v$ (BaBar)

Phys. Rev. D79, 012002 (2009)

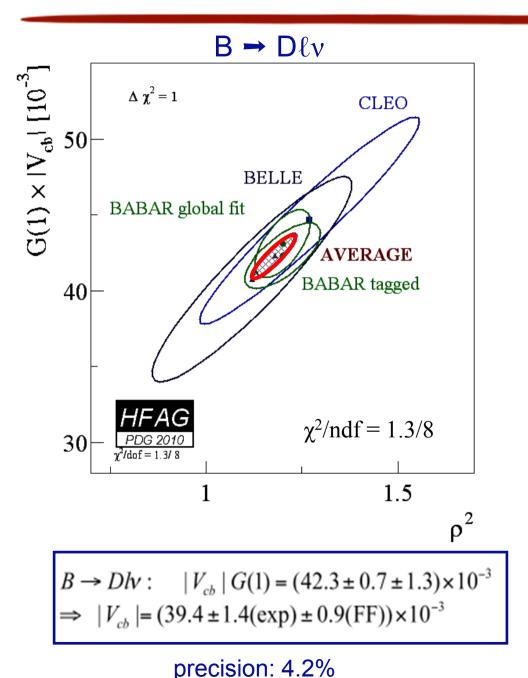

- Untagged analysis ("global fit"):
 Select Dℓv and D*ℓv
 (no □_{soft} reco.!)
- Binned 3D fit to p_ℓ, p_D and cosθ_{BY}
- •Measure $D\ell v, D^*\ell v$ rates and FF parameters ρ_D , ρ_{D^*} (,R₁, R₂)
- Extract |V_{cb}|G(1), |V_{cb}|F(1)

$$\mathcal{G}(1)|V_{cb}| = (43.1 \pm 0.8 \pm 2.3) \times 10^{-3}$$

 $\mathcal{F}(1)|V_{cb}| = (35.9 \pm 0.2 \pm 1.2) \times 10^{-3}$

Hadronic-tag analysis, 3200 Events!

 Extract signal from missing mass in 10 w bins



Combined results of both BaBar B → Dℓv analyses:

$$G(1)|V_{cb}| = (42.4 \pm 0.7 \pm 1.6)x10^{-3}$$

 $\rho^2 = 1.18 \pm 0.04 \pm 0.04$
 $Br(B^0 \rightarrow D\ell v) = (2.16 \pm 0.08)\%$

Error on G(1)|V_{cb}| reduced to 4% (1-2 years ago: >10%)

Consistency of $|V_{cb}|$ from $B \rightarrow D^{(*)} \ell v$

 $B \rightarrow D^* \ell \nu$ $F(1) \times |V_{cb}| [10^{-3}]$ $\Delta \chi^2 = 1$ **CLEO** 40 OPAL (excl.) DELPHI (excl.) OPAL (part. reco.) VERAGE 35 ABAR (Global Fit) ALEPH BABAR (D*0) BABAR (excl.) 30 $\chi^2/ndf = 26.1/21$ PDG 2010 $\chi^2/dof = 26.1/21$ (CL = 3) 2 0.5 1.5 0

> $B \to D^* lv$: $|V_{cb}| F(1) = (35.33 \pm 0.59) \times 10^{-3}$ \Rightarrow $|V_{cb}| = (38.4 \pm 0.6(\exp) \pm 1.0(FF)) \times 10^{-3}$

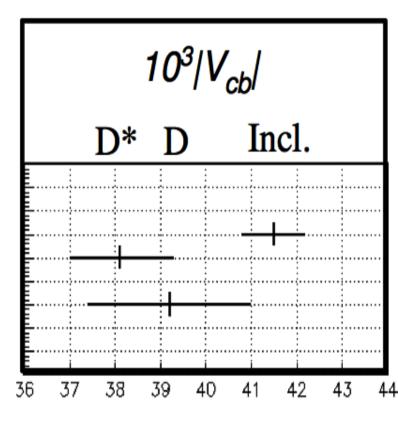
precision: 3.0%, agreement not satisfactory

Problem with BF and FF for $B \rightarrow X_c \ell \nu$ Decays

- Additional s.l. decays with D** (narrow: D₁, D₂*, broad D₁', D₀*)
 - Narrow states agree for Belle (tagged), BaBar (tagged+untagged), D0
 - Broad states not well known: D₀* agrees for BaBar+Belle, D₁' not seen by Belle
 - Contribution from broad states larger than predicted!
- Sum of D/D*/D**ℓν does not saturate total B→Xcℓν branching fraction

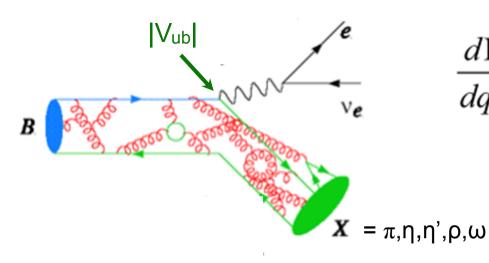
$$\mathcal{B}(B^0 \to X_c \ell \nu) > \mathcal{B}(B^0 \to D \ell \nu) + \mathcal{B}(B^0 \to D^* \ell \nu) + \mathcal{B}(B^0 \to D^* \ell \nu) + \mathcal{B}(B^0 \to D^* \ell \nu)$$

[10.1 ± 0.4]% > [2.17 ± 0.12]% + [5.16 ± 0.11]% + [1-2]%


- •Explanations for missing BF::
 - non-resonant (D/D* + nπ)ℓv (n≥2)
 - non-resonant (D/D* + η) ℓν
 - radial excitations (?)
 - unmeasured D** decay modes(not all D** branching fractions known)?

⇒ ~15% missing

But: so far no evidence for non-resonant charm states, but sensitivity remains limited


Conclusions for |Vcb|

- F(1) |Vcb| determined by fit over entire w range, requires parameterization!
- Thus |V_{cb}| depends on F(1) from LQCD, and also on FF parametrization!
- Predictions for w>1 from LQCD would reduce uncertainty!
- Desired experimental improvements:
 - Analyses on full B-Factory data sets, e.g.
 B→Dℓv from Belle (720 fb⁻¹)
 - B→D*ℓν measurement with fit in 4 dimensions, interference terms!
 higher sensitivity to R₁, R₂, and ρ²
 - Hadronic-tag measurements at SuperB measurements of D** states

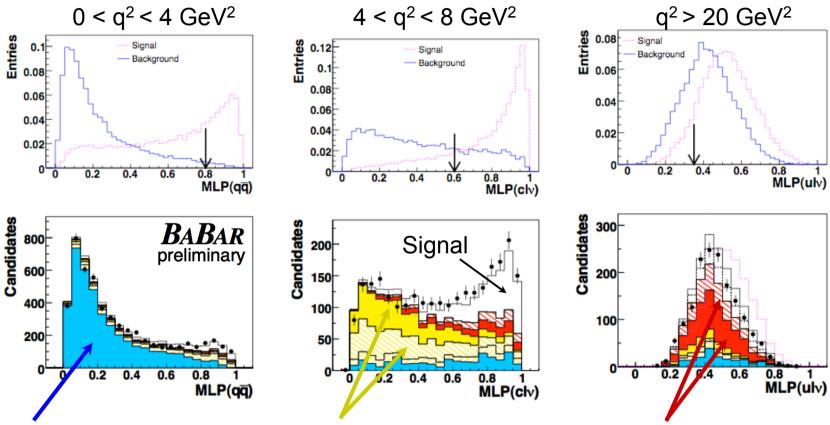
Exclusive $|V_{cb}| \sim 2\sigma$ lower than inclusive $|V_{cb}|$!

|Vub| from $B \rightarrow \pi \ell \nu$

$$\frac{d\Gamma}{dq^2}(B \to \pi l \nu) = \frac{G_F^2}{24\pi^3} p_\pi^3 |V_{ub}|^2 |f_+(q^2)|^2$$

- Tagging events via 2nd B decays
 - untagged (with v econstruction)
 - semileptonic B tags
 - hadronic B tags
- Form-factor calculations using different methods (LQCD, LCSR, quark models)

Independent samples: different systematic uncertainties


Measurement in bins of q²

⇒ reduce model dependence

New untagged measurement from BaBar (presented at Moriond QCD)

Background Suppression

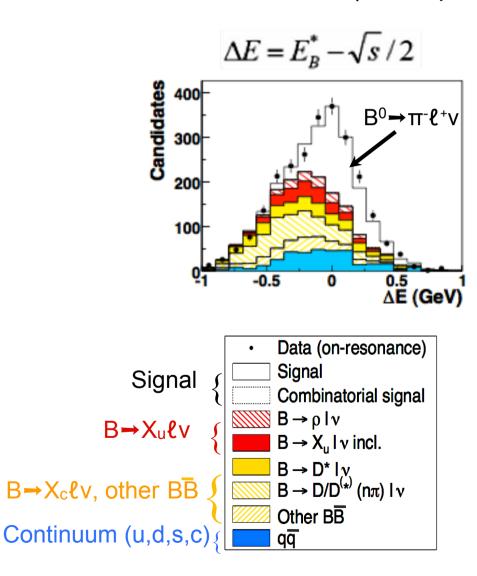
Neural-Net discriminators for each q² bin for each of 3 main backgrounds

Continuum background

- large uncertainty
- -off-resonance sample, very small, used as crosscheck for MC simulation

BB background

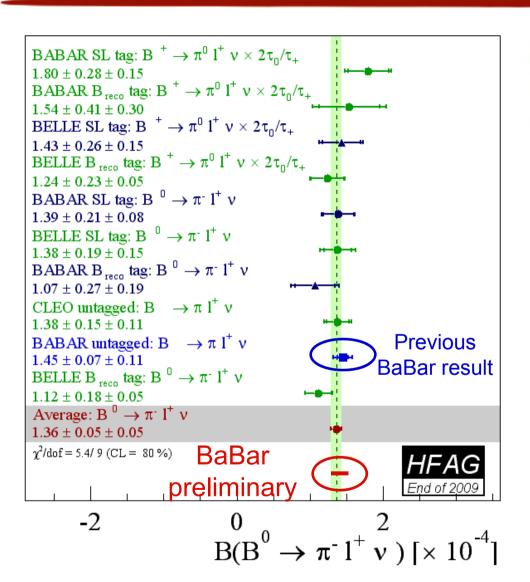
 $(D^*\ell v, D^{(**)}\ell v, non-semilep. B)$

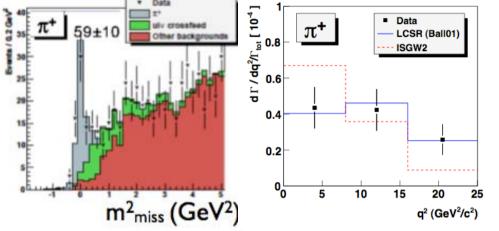

- Relatively easy to separate
- Uncertain BF and FF for D*ℓv BF, D**ℓv,
- Xclv data control samples

B→X_uℓv background

- excl. BF: > 15% uncertainty
- incl. BF: ~ 10% uncertainty
- shape sensitive to SF param.
- no good data control sample

$B \rightarrow \pi/\rho \ell \nu$ Signal Extraction


- Extract signal yield in bins of q² from fit to 2D ΔE-m_{ES} distribution
- Simultaneous 4-mode fit $(\pi^{\pm}, \pi^{0}, \rho^{\pm}, \rho^{0})$ assuming isospin symmetry



Decay Mode	# Signal Cand.
$B^0 \rightarrow \pi^- \ell^+ \nu$	7555 ± 286
$B^+ \rightarrow \pi^0 \ell^+ v$	4356 ± 362
$B^0 \rightarrow \rho^- \ell^+ v$	1948 ± 116
$B^+ \rightarrow \rho^0 \ell^+ v$	2731 ± 147

$B \rightarrow \pi \ell \nu$ Branching Fraction

Belle: arXiv: 0812.1414 [hep-ex]

- Hadronic tag events provide very low background sample, B charge, flavor, and momentum!
- Yield of had. tagged events very low:
 ~100 B⁰→π[±]ℓν / ab⁻¹
- Need ~10 ab⁻¹ (~1000 B⁰→π[±]ℓν)
 to measure shape of distribution!

BaBar preliminary:

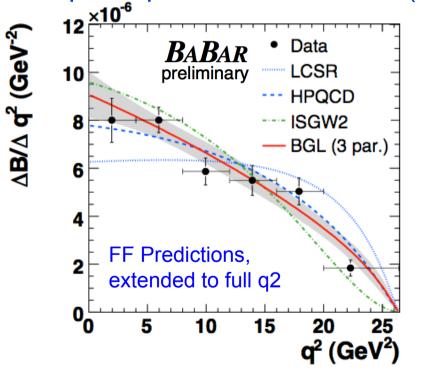
$$\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.41 \pm 0.05 \pm 0.07) \times 10^{-4}$$

HFAG average:

$$\mathcal{B}(B^0 \to \pi^- l^+ v) = (1.36 \pm 0.05 \pm 0.05) \times 10^{-4}$$

$B \rightarrow \pi \ell \nu$ Systematic Errors

q ² range (GeV ²)	0-4	12-16	>20	
Reco./ID efficiencies (tracks, γ, e, μ)	5%	5%	4%]
K _L production and interactions	2%	6%	5%	v reco.
B→X _u ℓv BF and SF param.	<1%	<1%	6%	
Continuum bkg	5%	2%	6%	
Total	8%	8%	11%	


What can be improved?

- track & photon reconstruction, KL rates ⇒ better v reconstruction
- study of charm fragmentation to correct simulation (untagged only)
- More precise measurements of incl. and excl. B→X_uℓv
- BF and dynamics, FF, of B→X_uℓν background

| Vub | from "Classic Method"

$$|V_{ub}| = \sqrt{rac{\Delta \mathcal{B}(q_{min}^2, q_{max}^2)}{ au_0 \; \Delta \zeta(q_{min}^2, q_{max}^2)}}$$

Requires parametrization of
$$f_+(q^2)$$

$\Delta\zeta(q_{min}^2,q_{max}^2) = \frac{G_F^2}{24\pi^3}$	$\int\limits_{0}^{q_{max}^{2}}p_{\pi}^{3} f_{+}(q^{2}) ^{2}dq^{2}$
Ģ	I_{min}^2

	q^2 Range	$\Delta \zeta$	$ V_{ub} $
	(GeV^2)	(ps^{-1})	(10^{-3})
$B \to \pi \ell \nu$			
LCSR [15]	0 - 16	$5.44{\pm}1.43$	$3.63 \pm 0.12^{+0.59}_{-0.40}$
HPQCD [22]	16 - 26.4	$2.02{\pm}0.55$	$3.21 \pm 0.17^{+0.55}_{-0.36}$

Exp. error: 3-5%

Theory error dominant: -11%, +17%

|V_{ub}| results for LCSR, HPQCD consistent with previous BaBar publication

Phys. Rev. Lett. 98, 091801 (2007)

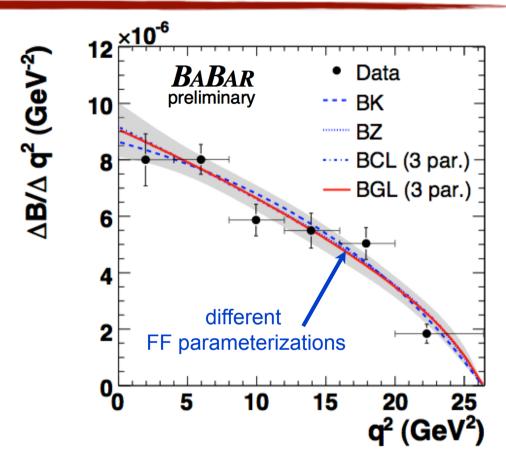
- \Rightarrow expect no significant improvement for $|V_{ub}|$ for this method)
- ⇒ make use of improved shape measurement in data

Form-Factor Parameterizations

1. Becirevic-Kaidalov (BK)

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{(1 - q^{2}/m_{B^{*}}^{2})(1 - \alpha_{BK}q^{2}/m_{B^{*}}^{2})}$$

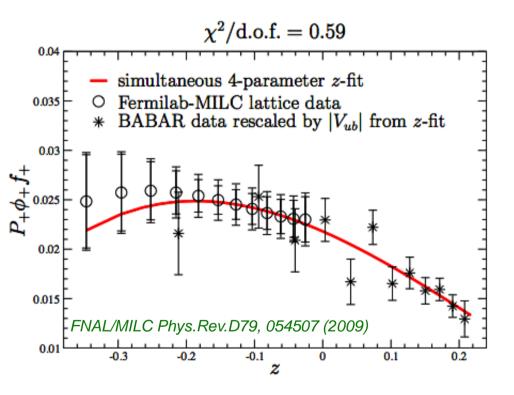
2. Ball-Zwicky (BZ)


$$f_{+}(q^{2}) = f_{+}(0) \left[\frac{1}{1 - q^{2}/m_{B^{*}}^{2}} + \frac{r_{BZ}q^{2}/m_{B^{*}}^{2}}{(1 - q^{2}/m_{B^{*}}^{2})(1 - \alpha_{BZ}q^{2}/m_{B^{*}}^{2})} \right]$$

3. Boyd, Grinstein, Lebed (BGL)

$$f_{+}(q^{2}) = rac{1}{\mathcal{P}(q^{2})\Phi(q^{2},q_{0}^{2})} \sum_{k=0}^{\infty} a_{k}(q_{0}^{2})[z(q^{2},q_{0}^{2})]^{k}$$
 $z(q^{2},q_{0}^{2}) = rac{\sqrt{m_{+}^{2}-q^{2}}-\sqrt{m_{+}^{2}-q_{0}^{2}}}{\sqrt{m_{+}^{2}-q^{2}}+\sqrt{m_{+}^{2}-q_{0}^{2}}}$

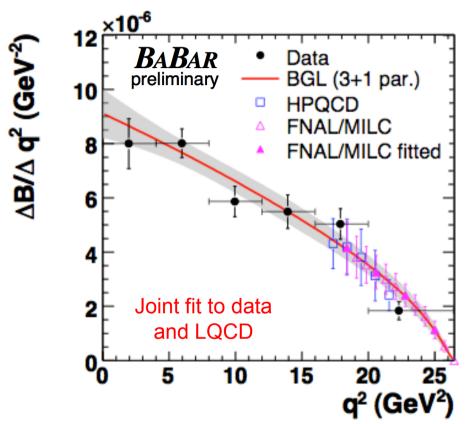
4. Bourrely, Caprini, Lellouch (BCL)


$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{k_{max}} \underbrace{b_{k}} (q_{0}^{2}) \{ [z(q^{2}, q_{0}^{2})]^{k} - (-1)^{k-k_{max}-1} \frac{k}{k_{max}+1} [z(q^{2}, q_{0}^{2})]^{k_{max}+1} \}$$

- Fit to data very similar for all four parametrizations
- Current exp. precision cannot constrain more than 3 shape parameters

Some Comments on "Pof+ vs. z"

$$f_{+}(q^{2}) = \frac{1}{\mathcal{P}(q^{2})\Phi(q^{2}, q_{0}^{2})} \sum_{k=0}^{\infty} a_{k}(q_{0}^{2})[z(q^{2}, q_{0}^{2})]^{k}$$
$$z(q^{2}, q_{0}^{2}) = \frac{\sqrt{m_{+}^{2} - q^{2}} - \sqrt{m_{+}^{2} - q_{0}^{2}}}{\sqrt{m_{+}^{2} - q^{2}} + \sqrt{m_{+}^{2} - q_{0}^{2}}}$$



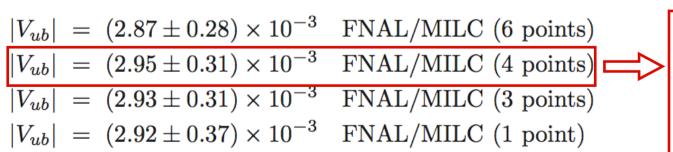
Presentation of data in term of $P\Phi f+(z)$ is not without problem and combined fit of data and LQCD prediction is problematic:

- Translation of binned ΔB/Δq² data spectrum to PΦf₊:
 P=P(q²), Φ=Φ(q²), pπ=pπ(q²)
 ⇒ prefer fit to ΔB/Δq²
- 2. Large correlations between LQCD points result in instability of fit: For FNAL/MILC:
 - neighboring points : ρ=99%
 - next neighbor still : ρ=95%
 - ⇒ reduce # LQCD points in fit

Theorists, please provide values for all relevant parameters (masses, numerical factors, etc.) used in your calculation in the publication!

|Vub| from "LQCD+BaBar Fit"

To be submitted to PRD


BaBar prelim. 2010 + FNAL (4 points):

$$a_0 = (2.22 \pm 0.21) \times 10^{-2}$$

 $a_1/a_0 = -0.86 \pm 0.23$
 $a_2/a_0 = -0.97 \pm 1.36$
 $|V_{ub}| = (2.95 \pm 0.31) \times 10^{-3}$

Previous fit by FNAL Lattice Group:

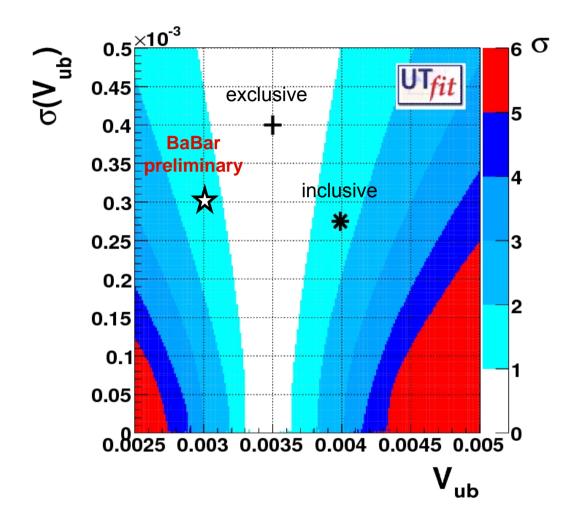
BaBar 2007 data + FNAL (12 points):

$$|V_{ub}| = (3.38 \pm 0.36) \times 10^{-3}$$

Error composition:

~3% Measured total BF

~5% Shape (from data)

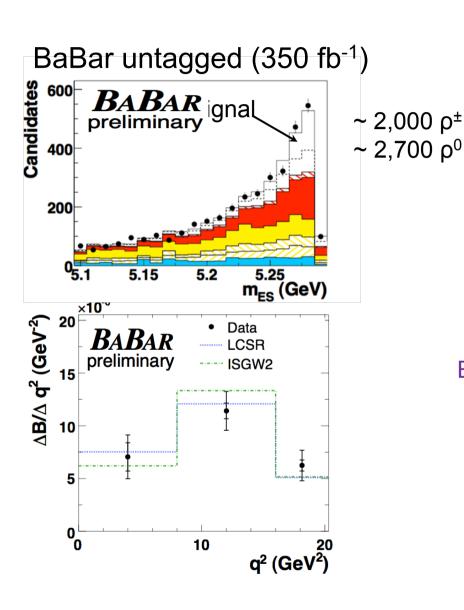

~ 8.5% FF norm. (from LQCD)

Currently most precise exclusive |Vub| determination: ~10%

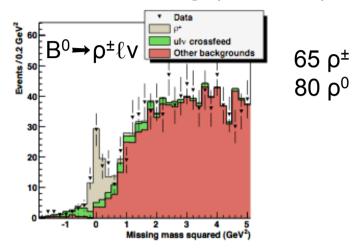
HPQCD (1 point)

 $|V_{ub}| = (2.99 \pm 0.35) \times 10^{-3}$

Inclusive vs. Exclusive | Vub |



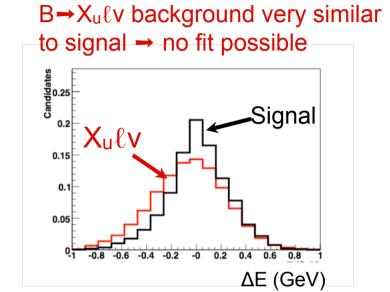
Difference between inclusive and exclusive |Vub| determinations has increased again!


BABAR: B→plv-A Cross-Check?

BABAR: to be submitted to PRD

Belle: arXiv: 0812.1414 [hep-ex]

Belle hadronic tag (604 fb⁻¹)



BaBar prelim.	q^2 Range (GeV ²)	$\Delta \zeta$ (ps ⁻¹)	$ V_{ub} $ (10^{-3})
LCSR [16]		13.79	2.75 ± 0.24
ISGW2 [14]	0 - 20.3	14.20	2.83 ± 0.24

Need calculations with reliable theory error!

B→plv (untagged) Systematics

q² range	0-8	8-16	16-20.3
B→X _u ℓv BF and SF param.	14%	11%	17%
B→ρ ℓ v FF's (A ₁ ,A ₂ ,V)	14%	8%	6%
K _L production and interactions	11%	6%	9%
Continuum bkg	9%	4%	5%
Total	26%	16%	21%

Much larger syst. errors than for π !

What can be improved?

- Extend measurement over larger phase space (lower p_ℓ cut, currently at 1.8 GeV.
 ⇒ reduce FF model dependence
- Suppress or improve knowledge of B→X_uℓv background
 - Need high-statistics tagged sample (Super B Factory)
 - Constrain combinatorial background from data, e.g. Mππ sidebands

Other Resonances: $B \rightarrow \eta/\eta'/\omega \ell v$

Current signal yields for untagged and tagged measurements:

Untagged

Tagged

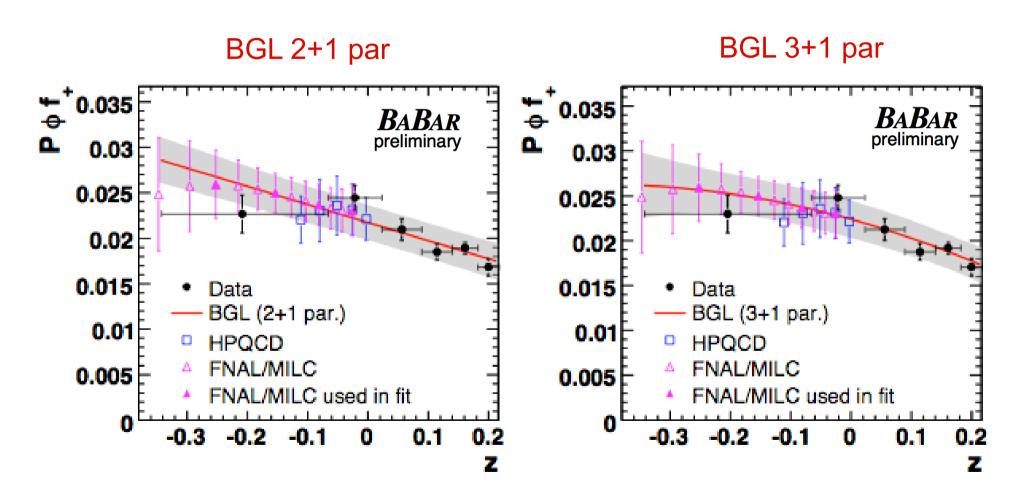
Mode	N(signal)	Experiment	N(signal)	Experiment
π±+π ⁰	~ 12000	BaBar (~350 fb ⁻¹)	110	Belle Breco(~600 fb ⁻¹)
ρ±+ρ0	~ 5000	BaBar (~350 fb ⁻¹)	145	Belle Breco (~600 fb ⁻¹)
η	~ 660	BaBar (~420 † b ⁻¹)	55	BaBar sl. tag (~350 fb ⁻¹)
η΄	~ 125	BaBar (~420 fb-1)	-	BaBar sl. tag (~350 fb ⁻¹)
ω	~ 500	BaBar (~350 fb ⁻¹)	25	Belle Breco (~600 fb ⁻¹)

Close to "last word" from BaBar (* expectation, unofficial)

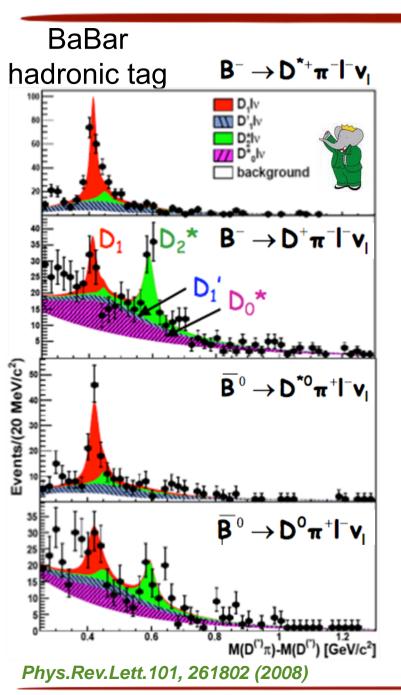
Update of Belle Breco analyses ⇒ N ×1.5 ?

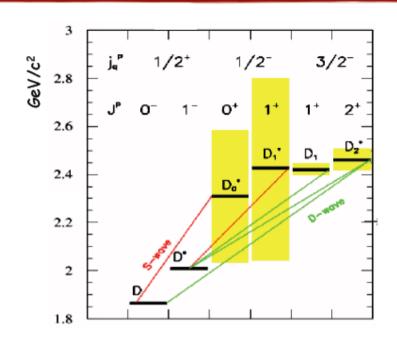
Conclusions on |Vub|

- Improveed measurement of $B \rightarrow \pi l \nu$ form-factor shape from data combined with LQCD predictions in simultaneous fit to BGL ansatz reduced theory error, $\sigma |V_{ub}| \sim 10\%$
- Unfortunately LQCD predictions are only available in a region where data rate is small ($\propto p_{\pi}^3$) and experimental errors are large!
- Further improvement in LQCD predictions:
 - Yet more precise f₊(q²) calculations, if possible at lower q² and fewer points
 - ❖ Predictions for B → $\rho/\omega/\eta I_V$ FF to enable extraction of |Vub| from these processes and insight into cause for difference of inclusive-exclusive |V_{ub}| measurements???.


Many thanks to the lattice community for organizing this workshop and for close collaboration over many years on several topics!

My colleague Jochen Dingfelder and I have benefitted greatly from working with you!


Thank you!


|Vub| Fit: PΦf+ vs. z

• Translation of " $\Delta B/\Delta q^2$ vs. q^2 " fit results to " $P\Phi f_+$ vs. z"

Higher-Mass States: D**→ D(*) {v

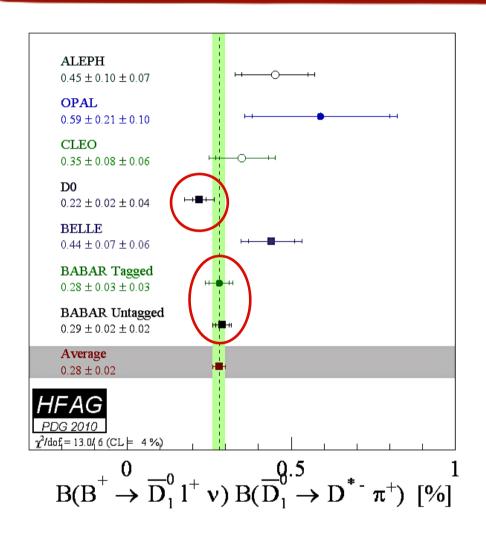
2 narrow states : D_1 , D_2 *

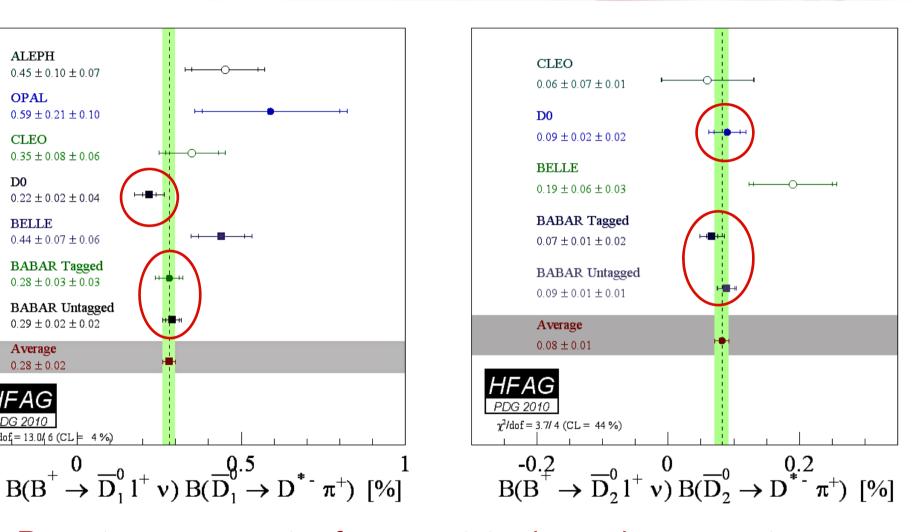
2 broad states : D_1 , D_0 *

Hadronic-tag measurements of narrow and broad

resonances from BaBar and Belle

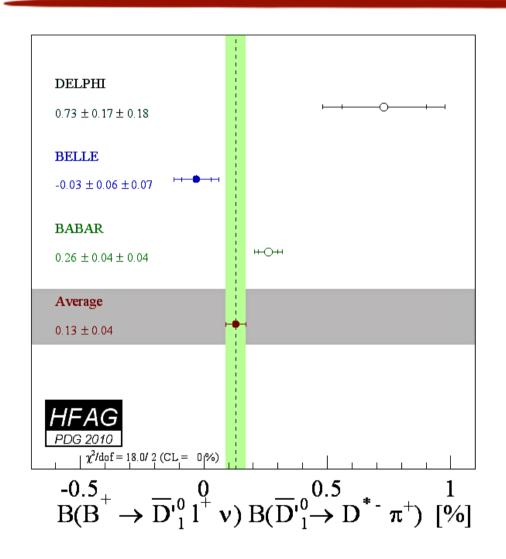
- \Rightarrow use mass difference M(D^(*) \square)-M(D^(*))
- Untagged measurement of narrow resonances

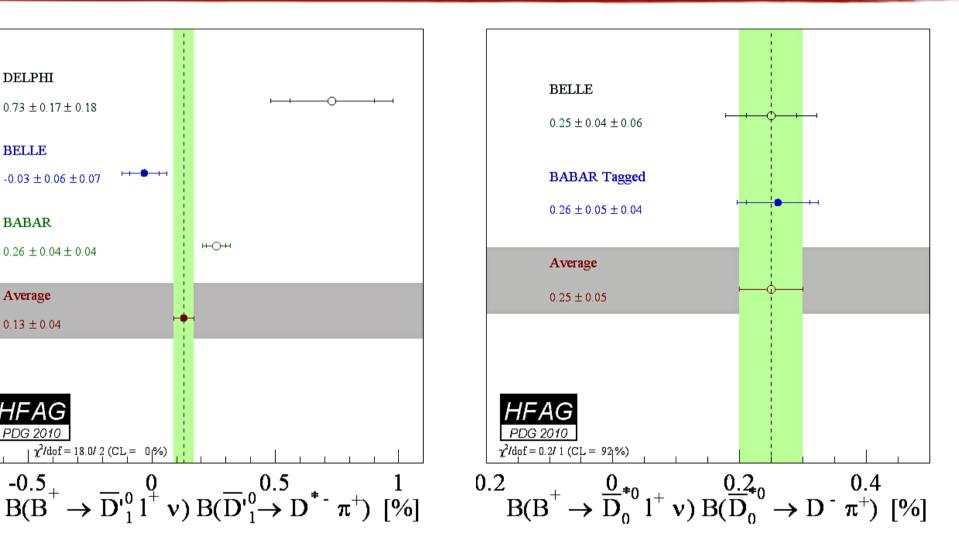

from BaBar and D0


Higher-Mass States: D**→ D(*) lv

Decay Mode	Yield	$\mathcal{B}(\bar{B} \to D^{**}\ell^-\bar{\nu}_\ell) \times \mathcal{B}(D^{**} \to D^{(*)}\pi) \%(BELLE)$	BABAR Yield	BABAR Branching Fraction
		$D\pi$ invariant mass fit		
$B^- \rightarrow D_0^{*0} \ell^- \bar{\nu}_{\ell}$	102 ± 19	$0.24 \pm 0.04 \pm 0.06$	137 ± 26	$0.26 \pm 0.05 \pm 0.04$
$B^- \rightarrow D_2^0 \ell^- \bar{\nu}_{\ell}$	94 ± 13	$0.22 \pm 0.03 \pm 0.04$	97 ± 16	$0.15 \pm 0.02 \pm 0.01$
$\bar{B}^0 \rightarrow D_0^{*+} \ell^- \bar{\nu}_{\ell}$	61 ± 22	$0.20 \pm 0.07 \pm 0.05$	142 ± 26	$0.44 \pm 0.08 \pm 0.07$
$\bar{B}^0 \rightarrow D_2^+ \ell^- \bar{\nu}_\ell$	68 ± 13	$0.22 \pm 0.04 \pm 0.04$	29 ± 13	$0.07 \pm 0.03 \pm 0.01$
		$D^*\pi$ invariant mass fit		
$B^- \rightarrow D_1^{\prime 0} \ell^- \bar{\nu}_{\ell}$	-5 ± 11	< 0.07 @ 90CL	142 ± 21	$0.27 \pm 0.04 \pm 0.05$
$B^- \rightarrow D_1^0 \ell^- \bar{\nu}_{\ell}$	81 ± 13	$0.42 \pm 0.07 \pm 0.07$	165 ± 18	$0.29 \pm 0.03 \pm 0.03$
$B^- \rightarrow D_2^0 \ell^- \bar{\nu}_\ell$	35 ± 11	$0.18 \pm 0.06 \pm 0.03$	40 ± 7	$0.07 \pm 0.01 \pm 0.006$
$\bar{B}^0 \rightarrow D_1^{\prime +} \ell^- \bar{\nu}_{\ell}$	4 ± 8	< 0.5 @ 90CL	86 ± 18	$0.31 \pm 0.07 \pm 0.05$
$\bar{B}^0 \rightarrow D_1^+ \ell^- \bar{\nu}_{\ell}$	20 ± 7	$0.54 \pm 0.19 \pm 0.09$	88 ± 14	$0.27 \pm 0.05 \pm 0.03$
$\bar{B}^0 \rightarrow D_2^+ \ell^- \bar{\nu}_\ell$	1 ± 6	< 0.3 @ 90CL	12 ± 5	$0.03 \pm 0.01 \pm 0.006$

- Narrow D** states agree for Belle, BaBar (tagged+untagged), D0
- Results for broad D₀* consistent for BaBar and Belle
- BaBar observes D₁', Belle does not!
- Contribution from broad (1/2⁻) states larger than predicted by theory!
 "3/2 > 1/2 puzzle"


Narrow D** Resonances



Recent measurements of narrow states in good agreement, also for tagged and untagged methods! Partial BF for D** still not known!

Broad D** Resonances

The situation is less clear for the broad states ...! Masses, widths, and partial BFs of broad D** not well known!