Measuring Δm_s

Greg Thompson University of Illinois at Urbana-Champaign

> Lattice QCD Meets Experiment April 26, 2010

B_s Oscillations

$$P(t)_{B_s^0 \to \bar{B}_s^0} = \frac{1}{2\tau} e^{-\frac{t}{\tau}} \left(1 - \cos\left(\Delta m_s t\right)\right)$$
$$\Delta m_s = m_H - m_L$$

In conjunction with existing results and lattice QCD quantity ξ :

$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d}}{m_{B_s}} \frac{1}{\xi^2} \left| \frac{V_{td}}{V_{ts}} \right|^2$$
$$\xi^2 \equiv \frac{f_{B_s}^2 B_{B_s}}{f_{B_d}^2 B_{B_d}}$$

Measuring Δm_s

In order to determine the mixing frequency, there are three ingredients to be obtained:

Flavor at time of decay
 Final state products

- •Flavor at time of production
 - →Flavor tagging
- •Proper decay time
 - ➡Time dependent analysis

fragmentation particles and flavor of B meson

• CDF uses a combined same side and opposite side tag

Flavor Tagging

- Parameters of tagging
 - Dilution: D=1-2p (p is mis-tag rate)
 - Tagging Efficiency ε = tagged events/total
 - Tagging Power = ϵD^2
- An Example
 - D = 40% (Correct tag 70% of the time)
 - ε = 5%
 - $\epsilon D^2 \approx 1\%$
 - IK typical signal events has "power" of I0 perfectly tagged events

Opposite Side Tagging

lepton+track sample at CDF

tagger [%]	efficiency	dilution	εD^2
Muon	$\textbf{4.6} \pm \textbf{0.0}$	34.7 ± 0.5	$\textbf{0.58} \pm \textbf{0.02}$
Electron	$\textbf{3.2}\pm\textbf{0.0}$	$\textbf{30.3} \pm \textbf{0.7}$	$\textbf{0.29} \pm \textbf{0.01}$
JQT	95.5 ± 0.1	$\textbf{9.7}\pm\textbf{0.2}$	$\textbf{0.90} \pm \textbf{0.03}$
Kaon	$\textbf{18.1} \pm \textbf{0.1}$	11.1 ± 0.9	$\textbf{0.23}\pm\textbf{0.02}$
OST old	95.6 ± 0.1	11.9 ± 0.1	1.34 ± 0.03
OST NN	$\textbf{95.8} \pm \textbf{0.1}$	12.7 ± 0.2	$\textbf{1.54} \pm \textbf{0.04}$

Challenges include detector acceptance and misidentification (fake leptons, imperfect JQT)

Same Side Tagging

Fragmentation

- •B⁰/B⁺ likely accompanied by π^+/π^-
- Bs likely accompanied by a K⁺
 need MC to measure D

Strategy
tune MC using B⁺ and B⁰
use PID to de-weight pions
very important

CDF: $\epsilon D^2 \approx 3.7\% (4.8\%) hadronic(semileptonic)$

Lifetime Measurement

Mean proper time resolution of 25.9 µm (~90 fs) in hadronic decays (worse in semileptonic)
In the fit, events are weighted based on this resolution

$$\sigma_{ct} = \left(\frac{L_{xy}}{p_T}\right) \sigma_{m_B} \oplus \left(\frac{m_B}{p_T(B)}\right) \sigma_{L_{xy}} \oplus ct\left(\frac{\sigma_{p_T}}{p_T}\right)$$

negligible

Becomes dominant in semileptonic events

CDF Results

Hadronic Yields

These fully reconstructed decays provide the most statistical weight to the measurement

CDF Results

Semileptonic Yield

 Semileptonic yields are much greater ~67K events in all channels

- •But we miss the neutrino, which hurts our momentum resolution
- •Which hurts our proper decay time resolution
- •More events, but much less powerful

CDF Results

$$\epsilon D^2 = 2.48 \pm 0.21(stat)_{-0.06}^{+0.06}(syst)\%$$

$$\Delta m_{\rm s} = 18.53 \pm 0.93(\text{stat}) \pm 0.30(\text{syst}) \text{ ps}^{-1}$$

CDF Projections

•With the 5σ measurement of Δm_s , CDF uses Bs oscillations to calibrate the SSKT. •Yield should scale by about 0.8 times per fb⁻¹ (trigger prescales at higher instantaneous luminosities means fewer events)

CDF Projections

 $\Delta m_s = (17.79 \pm 0.07) \text{ ps}^{-1}$ •Measurement performed without OST, partially reconstructed decays, semileptonic events •Full measurement won't be much better (most powerful events used here)

•But with added statistics, will be in systematic dominated regime

Decay Channel	old S	B	S/B	$S/\sqrt{S+B}$
$B_s^0 \to D_s^- \pi^+, \ D_s^- \to \phi \pi^-$	5613 ± 75	1070 ± 33	5.25 ± 0.17	68.66 ± 0.70
$B_s^0 \to D_s^- \pi^+, \ D_s^- \to K^* K^-$	2761 ± 53	1619 ± 40	1.71 ± 0.05	41.72 ± 0.74
$B_s^0 \to D_s^- \pi^+, \ D_s^- \to (3\pi)^-$	2652 ± 52	3533 ± 59	0.75 ± 0.02	33.72 ± 0.68
$B_s^0 \to D_s^-(3\pi)^+, \ D_s^- \to \phi\pi^-$	1852 ± 43	695 ± 26	2.66 ± 0.12	36.69 ± 0.73
Sum	12877 ± 113			

 $\sigma_{syst} \approx 0.07 p s^{-1}$

Stat only

Fig. 4. The distribution (arbitrary scale) of polar angles of hadrons containing *b* and \overline{b} quarks at the LHC.

(N. Harnew, Physics of Atomic Nuclei, 2008, Vol. 71, No. 4, pp568-604)

LHCb Prospects

•High yield and excellent PID gives LHCb some advantages

- •εD² = 8.7%
- • σ_{ct} =40fs
- •Triggered Yield = 264K
- •B/S = 0.6
 - •These are "optimistic" projections

• $\sigma_{\Delta ms} \sim 0.003 \text{ ps}^{-1}$ (stat) from 1 fb⁻¹ at $\sqrt{s} = 7 \text{ TeV}$

(N. Harnew, Physics of Atomic Nuclei, 2008, Vol. 71, No. 4, pp568-604)

$$\begin{array}{l} \frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d}}{m_{B_s}} \frac{1}{\xi^2} \left| \frac{V_{td}}{V_{ts}} \right|^2 \\ \frac{\Delta m_d}{\Delta m_s} = \frac{m_{B_d}}{m_{B_s}} \frac{1}{\xi^2} \left| \frac{V_{td}}{V_{ts}} \right|^2 \\ \frac{\pi_{B_d}}{\pi_{B_s}} = 0.983 \pm 0.001 (PDG, 2009) \\ \Delta m_d = 0.507 \pm 0.005 (PDG, 2009) \\ \left| \frac{V_{td}}{V_{ts}} \right| = 0.2060 \pm 0.0007 (exp)^{+0.0081}_{-0.0060} (theo) \\ \end{array}$$

Summary

- CDF and DØ have directly measured Δms
- CDF should be able to produce a result that is limited by systematics to a precision of 0.07ps⁻¹
- LHCb is predicting a measurement with precision on the order of 0.003ps⁻¹ on a relatively short time scale
- Any advances from theory will further constrain |Vtd|/|Vts|