B-meson mixing on the lattice

Elvira Gámiz

Fermi National Accelerator Laboratory

Batavia, Illinois

Lattice QCD Meets Experiment Workshop 2010

· Fermilab, April 26 (2010) ·

Determination of fundamental parameters of the SM

* CKM matrix elements: $|V_{td}|$, $|V_{ts}|$

Determination of fundamental parameters of the SM

* CKM matrix elements: $|V_{td}|$, $|V_{ts}|$

In the Standard Model

$$\Delta M_q|_{theor.} = \frac{G_F^2 M_W^2}{6\pi^2} |V_{tq}^* V_{tb}|^2 \eta_2^B S_0(x_t) M_{B_s} \frac{f_{B_q}^2 \hat{B}_{B_q}}{f_{B_q}^2 \hat{B}_{B_q}}$$

** Non-perturbative input

 $\frac{8}{3} f_{B_q}^2 B_{B_q}(\mu) M_{B_q}^2 = \langle \bar{B_q^0} | O_1 | B_q^0 \rangle(\mu) \quad \text{with} \quad O_1 \equiv [\overline{b^i} \, q^i]_{V-A} [\overline{b^j} \, q^j]_{V-A}$

Determination of fundamental parameters of the SM

* CKM matrix elements: $|V_{td}|$, $|V_{ts}|$

Unveiling New Physics effects.

* Hints of discrepancies between SM expectations and some flavour observables

A. Buras, talk at EPS-HEP 2009 or R. Van de Water, plenary talk at Lat09

** B_s mixing phase β_s as extracted from experiment $(S_{J/\psi\phi})$ and in the SM.

UT fit: Global fit to the CKM unitarity triangle using experimental and theoretical constraints. talk by **E. Lunghi**

 $2-3\sigma$ tension in the CKM description

* Tension is between the three most precise constraints: the $K^0 - \bar{K}^0$ mixing parameter ϵ_K , the ratio of mass differences $\Delta M_{B_s} / \Delta M_{B_d}$ describing $B^0 - \bar{B}^0$ mixing and $\sin(2\beta)$.

Laiho, Van de Water and Lunghi, Phys.Rev.D81:034503(2010)

* Constraints from $\Delta M_d / \Delta M_s$ limited by lattice errors for $\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}}$.

- # Constraining NP models.
 - * Comparison of ΔM and $\Delta \Gamma$ with experiment also provides bounds for ${\bf NP}$ effects

- # Constraining NP models.
 - * Comparison of ΔM and $\Delta \Gamma$ with experiment also provides bounds for NP effects

Bag parameters B_{B_s} and B_{B_d} can be used for theoretical predictions of, for example, $\mathcal{B}r(B \to \mu^+ \mu^-)$.

$$\frac{\mathcal{B}r(B_q \to \mu^+ \mu^-)}{\Delta M_q} = \tau(B_q) \, 6\pi \frac{\eta_Y}{\eta_B} \left(\frac{\alpha}{4\pi M_W \sin^2\theta_W}\right)^2 \, m_\mu^2 \, \frac{Y^2(x_t)}{S(x_t)} \, \frac{1}{\hat{B}_q}$$

- # Constraining NP models.
 - * Comparison of ΔM and $\Delta \Gamma$ with experiment also provides bounds for NP effects
- # Bag parameters B_{B_s} and B_{B_d} can be used for theoretical predictions of, for example, $\mathcal{B}r(B \to \mu^+ \mu^-)$.

$$\frac{\mathcal{B}r(B_q \to \mu^+ \mu^-)}{\Delta M_q} = \tau(B_q) \, 6\pi \frac{\eta_Y}{\eta_B} \left(\frac{\alpha}{4\pi M_W \sin^2\theta_W}\right)^2 \, m_\mu^2 \, \frac{Y^2(x_t)}{S(x_t)} \, \frac{1}{\hat{B}_q}$$

* Using lattice determinations of \hat{B}_q HPQCD, PRD80 (2009) 014503

$$\rightarrow \mathcal{B}r(B_s \to \mu^+ \mu^-) = (3.19 \pm 0.19) \times 10^{-9} \text{ and}$$
$$\mathcal{B}r(B_d \to \mu^+ \mu^-) = (1.02 \pm 0.09) \times 10^{-10}$$

* CDF (DØ) bounds
$$\mathcal{B}r(B_s \to \mu^+ \mu^-) \le 3.3(5.3) \times 10^{-8}$$
,
 $\mathcal{B}r(B_d \to \mu^+ \mu^-) \le 1 \times 10^{-8}$

In conjunction with experimental measurements ...

HFAG 10 CDF (Run II) $\Delta M_d|_{exp.} = (0.507 \pm 0.005)ps^{-1}$ $\Delta M_s|_{exp.} = (17.77 \pm 0.12)ps^{-1}$

HFAG 10

$$\left(\frac{\Delta\Gamma}{\Gamma}\right)_d = 0.010 \pm 0.037$$
 $\left(\frac{\Delta\Gamma}{\Gamma}\right)_s = 0.09 \pm 0.05$

2. $N_f = 2 + 1$ unquenched lattice calculation of B^0 mixing parameters

Quenched approximation: neglect vacuum polarization effects \rightarrow uncontrolled and ineducible errorstalk by A. Kronfeld

- HPQCD: E. Gámiz et al., Phys.Rev.D80:014503,2009
 - * Configurations: MILC staggered.
 - * Light quarks: Improved staggered (Asqtad)
 - * Heavy quarks: NRQCD
- Fermilab lattice/MILC: R.T. Evans *et al.*, PoS(LAT2009)245; R.T. Evans *et al.*, PoS(LAT2008)052 preliminary
 - * Configurations: MILC staggered.
 - * Light quarks: Improved staggered (Asqtad)
 - * Heavy quarks: Fermilab \rightarrow it can also be used for c quarks.
- RBC/UKQCD: C. Albertus et al., arXiv:1001.2023 exploratory
 - * Configurations: **RBC/UKQCD** domain wall.
 - * Light quarks: Domain wall.
 - * Heavy quarks: Static.

2.1. Some details of the simulations

	HPQCD	FNAL/MILC	RBC/UKQCD
0	0.12 fm	0.12 fm	0 11 fm
u	0.09 fm	0.09 fm	0.11 111
IImsea /msea	4	4	2
$\#m_{light}/m_s$	2	2	3
$\#m^{valence}$	full QCD	6 (include full QCD)	full QCD
renormalization	one-loop	one-loop	one-loop
lightest π (MeV)	~ 230	~ 230	\sim 430

See talk by C. Bernard

2.2. Results:
$$f_{B_q}\sqrt{B_{B_q}}$$

HPQCD, PRD80 (2009) 014503

Chiral+continuum extrapolations: NLO Staggered CHPT.

- * accounts for NLO quark mass dependence.
- * accounts for light quark discretization effects through $\mathcal{O}\left(\alpha_s^2 a^2 \Lambda_{QCD}^2\right)$ \rightarrow remove the dominant light discretization errors

2.2. Results:
$$\xi = \frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}$$

RBC/UKQCD: No extrapolation to the continuum **FNAL/MILC:** No renormalization included, but we expect a large cancellation between B_s^0 and B_d^0 renor. corrections.

2.2. Results:
$$\xi = \frac{f_{B_s}\sqrt{B_{B_s}}}{f_{B_d}\sqrt{B_{B_d}}}$$

RBC/UKQCD: No extrapolation to the continuum **FNAL/MILC:** No renormalization included, but we expect a large cancellation between B_s^0 and B_d^0 renor. corrections.

HPQCD result
$$\implies \left| \frac{V_{td}}{V_{ts}} \right| = 0.214(1)(5)$$

2.3. Error budget for $f_B \sqrt{\hat{B}_B}$

	HPQCD	FNAL/MILC
Source (70)	(final)	(preliminary)
stat. + chiral extrap.	2.3-4.1	2.7-4.0
χ PT + light quark disc.	-	0.4-2.5
residual a^2 extrap.	3 0-2 0	2.0
(heavy quark disc.)	5.0-2.0	2.0
$r_1^{3/2}$ uncertainty	2.3	3.0-3.1
$g_{B^*B\pi}$ uncertainty	1.0	0.3-0.6
quark masses tuning	1.5-1.0	0.6-0.5
operator matching	4.0	4.0
relativistic corr.	2.5	-
Finite volume	\leq 0.5	≤ 0.5
Total	6.7-7.1	6.1-7.3

* Ranges indicate $B_s^0 - B_d^0$ values.

2.3. Error budget for ξ

	HPQCD	FNAL/MILC	RBC/UKQCD	
Source (70)	(final)	(preliminary)	(exploratory)	
stat. + chiral extrap.	2.0	3.1	6-5	
χ PT + light quark disc.	-	2.8	7	
residual a^2 extrap.	0.3	0.2	Λ	
(heavy quark disc.)	0.3 0.2		4	
$r_1^{3/2}$ uncertainty	0.	0.2	*	
$g_{B^*B\pi}$ uncertainty	1.0	0.3	2	
quark masses tuning	1.0	0.7	1*	
operator matching	0.7	≤ 0.5	2	
relativistic corr.	0.4	-	2	
Finite volume	≤ 0.1	≤ 0.1	1	
Total	2.6	~ 4.3	9	

Source (%)	HPQCD	FNAL/MILC	improvement (factor of)
stat. + chiral extrap.	2.0	3.1	
χ PT + light quark disc.	-	2.8	
residual a^2 extrap.	0.3	0.2	
(heavy quark disc.)			
$r_1^{3/2}$ uncertainty	0.	0.2	
$g_{B^*B\pi}$ uncertainty	1.0	0.3	
quark masses tuning	1.0	0.7	
operator matching	0.7	\leq 0.5	
relativistic corr.	0.4	-	
Finite volume	≤ 0.1	≤ 0.1	

Source (%)	HPQCD	FNAL/MILC	improvement
stat. + chiral extrap.	1.0	1.5	2 🗸
χ PT + light quark disc.	-	2.8	
residual a^2 extrap.	03	0.2	
(heavy quark disc.)	0.0	0.2	
$r_1^{3/2}$ uncertainty	0.	0.2	
$g_{B^*B\pi}$ uncertainty	1.0	0.3	
quark masses tuning	1.0	0.7	
operator matching	0.7	\leq 0.5	
relativistic corr.	0.4	-	
Finite volume	≤ 0.1	≤ 0.1	

* Better statistics: More configurations (MILC multiplied by 4 N_{configurations}), improved techniques for correlation fits (smearing, random wall sources, ...)

 $\sqrt{}$ checked for one coarse ensemble (C. Bouchard for FNAL/MILC)

Source	HPQCD	FNAL/MILC	improvement
stat. + chiral extrap.	1.0	1.5	2
χ PT + light quark disc.	-	1.6	1.5-2
residual a^2 extrap. (heavy quark disc.)	0.2	0.1	1.5
$r_1^{3/2}$ uncertainty	0.	0.2	
$g_{B^*B\pi}$ uncertainty	1.0	0.3	
quark masses tuning	1.0	0.7	
operator matching	\leq 0.5	\leq 0.5	**
relativistic corr.	0.4	-	
Finite volume	≤ 0.1	≤ 0.1	

* Smaller values of lattice spacing (**FNAL/MILC** and **HPQCD**)

 $a = 0.09 \ fm$ (fine) $\rightarrow a = 0.06 \ fm$ (superfine) (eventually $a = 0.045 \ fm$)

** Matching $(f_B \sqrt{B_B})$: $4\% \rightarrow 2.5\%$

Source	HPQCD	FNAL/MILC	improvement
stat. + chiral extrap.	1.0	1.5	2
χ PT + light quark disc.	-	1.6	1.5-2
residual a^2 extrap.	0.2	0.1	1.5
$r_1^{3/2}$ uncertainty	0.	0.2	
$g_{B^*B\pi}$ uncertainty	0.5	0.2	2
quark masses tuning	0.5	0.3	1.5
operator matching	\leq 0.5	\leq 0.5	\sim
relativistic corr.	0.4	-	
Finite volume	\leq 0.1	\leq 0.1	

- * Better determination of inputs
- * Improving the actions: HISQ, heavy formulations (improved Fermilab action, improved NRQCD)

Source	HPQCD	FNAL/MILC	improvement
stat. + chiral extrap.	1.0	1.5	2
χ PT + light quark disc.	-	1.6	1.5-2
residual a^2 extrap.	0.2	0.1	15
(heavy quark disc.)	0.2	0.1	1.5
$r_1^{3/2}$ uncertainty	0.	0.2	
$g_{B^*B\pi}$ uncertainty	0.5	0.2	2
quark masses tuning	0.5	0.3	1.5
operator matching	\leq 0.5	\leq 0.5	\sim
relativistic corr.	0.4	-	
Finite volume	\leq 0.1	≤ 0.1	
Total (2 years)	1.4	~ 2.3	1.5-2

Source	RBC/UKQCD	RBC/UKQCD
Source	(now)	(in two years)
stat. + chiral extrap.	5-6	≤ 3
χ PT + light quark disc.	7	~ 2
residual a^2 extrap.	2	~1
(heavy quark disc.)	5	\geq 1
scale and quark masses uncertainty	1	≤ 1
$g_{B^*B\pi}$ uncertainty	3	≤ 1
operator matching	0-2	≤ 2
Finite volume	\leq 1	≤ 0.5
$1/m_b$ corrections	2	-
Total	9	≤ 4

O. Witzel at All Hands' Meeting 2010: USQCD Collaboration Meeting

2.5. Summary of expected lattice errors

	$f_B \sqrt{B_B}$	ξ
current	6-7%	3-4%
2 years	\sim 4-5%	~ 1.5 -2%
5 years*	$\sim 2\%$	$\sim 1\%$

Several high precision determinations of B_s^0 and B_d^0 mixing parameters with different heavy and light formulations.

* From FNAL/MILC estimates (talk by C. Bernard)

Effects of heavy new particles seen in the form of effective operators built with SM degrees of freedom

Effects of heavy new particles seen in the form of effective operators built with SM degrees of freedom

The most general Effective Hamiltonian describing $\Delta B = 2$ processes is

$$\begin{aligned} \mathcal{H}_{eff}^{\Delta B=2} &= \sum_{i=1}^{5} C_{i}Q_{i} + \sum_{i=1}^{3} \widetilde{C}_{i}\widetilde{Q}_{i} \quad \text{with} \\ Q_{1}^{q} &= \left(\bar{\psi}_{b}^{i}\gamma^{\nu}(\mathbf{I}-\gamma_{5})\psi_{q}^{i}\right) \left(\bar{\psi}_{b}^{j}\gamma^{\nu}(\mathbf{I}-\gamma_{5})\psi_{q}^{j}\right) \quad \mathsf{SM} \\ Q_{2}^{q} &= \left(\bar{\psi}_{b}^{i}(\mathbf{I}-\gamma_{5})\psi_{q}^{i}\right) \left(\bar{\psi}_{b}^{j}(\mathbf{I}-\gamma_{5})\psi_{q}^{j}\right) \quad Q_{3}^{q} &= \left(\bar{\psi}_{b}^{i}(\mathbf{I}-\gamma_{5})\psi_{q}^{j}\right) \left(\bar{\psi}_{b}^{j}(\mathbf{I}-\gamma_{5})\psi_{q}^{i}\right) \\ Q_{4}^{q} &= \left(\bar{\psi}_{b}^{i}(\mathbf{I}-\gamma_{5})\psi_{q}^{i}\right) \left(\bar{\psi}_{b}^{j}(\mathbf{I}+\gamma_{5})\psi_{q}^{j}\right) \quad Q_{5}^{q} &= \left(\bar{\psi}_{b}^{i}(\mathbf{I}-\gamma_{5})\psi_{q}^{j}\right) \left(\bar{\psi}_{b}^{j}(\mathbf{I}+\gamma_{5})\psi_{q}^{i}\right) \\ \widetilde{Q}_{1,2,3}^{q} &= Q_{1,2,3}^{q} \text{ with the replacement } (\mathbf{I}\pm\gamma_{5}) \rightarrow (\mathbf{I}\mp\gamma_{5}) \end{aligned}$$

where ψ_b is a heavy b-fermion field and ψ_q a light (q = d, s) fermion field.

Effects of heavy new particles seen in the form of effective operators built with SM degrees of freedom

The most general Effective Hamiltonian describing $\Delta B = 2$ processes is

$$\begin{aligned} \mathcal{H}_{eff}^{\Delta B=2} &= \sum_{i=1}^{5} C_{i}Q_{i} + \sum_{i=1}^{3} \widetilde{C}_{i}\widetilde{Q}_{i} \quad \text{with} \\ Q_{1}^{q} &= \left(\bar{\psi}_{b}^{i}\gamma^{\nu}(\mathbf{I}-\gamma_{5})\psi_{q}^{i}\right) \left(\bar{\psi}_{b}^{j}\gamma^{\nu}(\mathbf{I}-\gamma_{5})\psi_{q}^{j}\right) \quad \mathsf{SM} \\ Q_{2}^{q} &= \left(\bar{\psi}_{b}^{i}(\mathbf{I}-\gamma_{5})\psi_{q}^{i}\right) \left(\bar{\psi}_{b}^{j}(\mathbf{I}-\gamma_{5})\psi_{q}^{j}\right) \quad Q_{3}^{q} &= \left(\bar{\psi}_{b}^{i}(\mathbf{I}-\gamma_{5})\psi_{q}^{j}\right) \left(\bar{\psi}_{b}^{j}(\mathbf{I}-\gamma_{5})\psi_{q}^{i}\right) \\ Q_{4}^{q} &= \left(\bar{\psi}_{b}^{i}(\mathbf{I}-\gamma_{5})\psi_{q}^{i}\right) \left(\bar{\psi}_{b}^{j}(\mathbf{I}+\gamma_{5})\psi_{q}^{j}\right) \quad Q_{5}^{q} &= \left(\bar{\psi}_{b}^{i}(\mathbf{I}-\gamma_{5})\psi_{q}^{j}\right) \left(\bar{\psi}_{b}^{j}(\mathbf{I}+\gamma_{5})\psi_{q}^{i}\right) \\ \widetilde{Q}_{1,2,3}^{q} &= Q_{1,2,3}^{q} \text{ with the replacement } (\mathbf{I}\pm\gamma_{5}) \rightarrow (\mathbf{I}\mp\gamma_{5}) \end{aligned}$$

where ψ_b is a heavy b-fermion field and ψ_q a light (q = d, s) fermion field.

- C_i, \tilde{C}_i Wilson coeff. calculated for a particular BSM theory
- $\langle \bar{B^0}|Q_i|B^0\rangle$ calculated on the lattice

Some examples:

F. Gabbiani et al, Nucl.Phys.B477 (1996), **D. Bećirević et al**, Nucl.Phys.B634 (2002); general SUSY models

M. Ciuchini and L. Silvestrini, PRL 97 (2006) 021803; SUSY

Constraints on the mass insertions ($|Re(\delta_{23}^d)_{RR}| < 0.4$, $|(\delta_{23}^d)_{LL}| < 0.1$,...)

M. Blanke et al, JHEP 12(2006) 003; Little Higgs model with T-parity

 ΔM_q can be used to test viability of the model. To constrain and test the model in detail $\Delta M_s / \Delta M_d$ and $\Delta \Gamma_q$.

Lunghi and Soni, JHEP0709(2007)053; Top Two Higgs Doublet Model

Constraints on β_H (ratio of vev's of the two Higgs) and m_{H^+}

M. Blanke et al, JHEP0903(2009)001; Warped Extra Dimensional Models

Constraints on the KK mass scale: anarchic approach seems implausible, generally $M_{KK} > 20TeV$ but can be as low as $M_{KK} \simeq 3TeV$ (moderate fine tunning).

Some examples:

W. Altmannshofer et al, 0909.1333; SUSY flavor models

Identify useful flavour observables $(S_{\psi\phi}, B_s \rightarrow \mu^+ \mu^-, ...)$ to exclude some SUSY models and/or distinguish them from LHT and RS models. Updated analysis of bound on flavor violating terms in the SUSY soft sector.

A. Soni et al, 1002.0595; SM with four generations

 $m_{t'} \sim 400 - 600 \text{ GeV}, |V_{t'b}^* V_{t's}| = (0.05 - 1.4) \times 10^{-2}, \dots$

Some examples:

W. Altmannshofer et al, 0909.1333; SUSY flavor models

Identify useful flavour observables $(S_{\psi\phi}, B_s \rightarrow \mu^+ \mu^-, ...)$ to exclude some SUSY models and/or distinguish them from LHT and RS models. Updated analysis of bound on flavor violating terms in the SUSY soft sector.

A. Soni et al, 1002.0595; SM with four generations

 $m_{t'} \sim 400 - 600 \text{ GeV}, |V_{t'b}^* V_{t's}| = (0.05 - 1.4) \times 10^{-2}, \dots$

- * Only quenched calculation available Becirevic et al, JHEP 04 (2002) 025
- ★ Straightforward extension of previous calculations
 → FNAL/MILC: work in progress

- # SM short-distance description alone can not successfully describe D^0 mixing.
- # Neither short-distance nor long-distance SM predictions can be calculated accurately.
- **#** SM contribution of the order of experiment and dominated by long-distance effects.

- # SM short-distance description alone can not successfully describe D^0 mixing.
- # Neither short-distance nor long-distance SM predictions can be calculated accurately.
- **#** SM contribution of the order of experiment and dominated by long-distance effects.

What can we calculate on the lattice?

- × * Long distance: Current lattice techniques are inefficient for calculating non-local operators
- * Short distance: High precision calculation on the lattice
 - ****** Same effective hamiltonian as for $\Delta B = 2$ processes.
 - ** Comparison with experiment can exclude large regions of parameters in many models, constraining BSM building.
 E. Golowich, J. Hewett, S. Pakvasa and A. Petrov, PRD 76 (2007)

- ** A consistent unquenched determination of all matrix elements involved, free of the uncontrolled uncertainties associated to quenching is needed
 - Latest SM calculations (quenched): L. Lellouch, C.-J. D Lin Phys.Rev.D64 (2001); Huey-Wen Lin et al, Phys.Rev.D74 (2006)
 - Latest BSM calculation (quenched): R. Gupta et al., Phys.Rev.D55 (1997)

- ** A consistent unquenched determination of all matrix elements involved, free of the uncontrolled uncertainties associated to quenching is needed
 - Latest SM calculations (quenched): L. Lellouch, C.-J. D Lin Phys.Rev.D64 (2001); Huey-Wen Lin et al, Phys.Rev.D74 (2006)
 - Latest BSM calculation (quenched): R. Gupta et al., Phys.Rev.D55 (1997)
- ** Work in progress: (goal: 10% errors) FNAL/MILC

5. Future prospects and goals

Reduction of errors for $f_{B_q}\sqrt{B_{B_q}}$ and ξ \rightarrow high precision tests of the SM.

	$f_B \sqrt{B_B}$	ξ
current	6-7%	3-4%
2 years	\sim 4-5%	~1.5 -2%
5 years*	$\sim 2\%$	\sim 1%

5. Future prospects and goals

Reduction of errors for $f_{B_q}\sqrt{B_{B_q}}$ and ξ \rightarrow high precision tests of the SM.

	$f_B \sqrt{B_B}$	ξ
current	6-7%	3-4%
2 years	\sim 4-5%	\sim 1.5-2%
5 years*	$\sim 2\%$	\sim 1%

Calculation of matrix elements needed for $\Delta\Gamma_q$ Lenz and Nierste, JHEP0706 (2007) 072

$$\left(\frac{\Delta\Gamma}{\Gamma}\right) = \left(\frac{1}{245 \text{MeV}}\right)^2 \left[0.170 \left(f_{B_q}^2 B_{B_q}\right) + 0.059 R^2 \left(f_{B_q}^2 \tilde{B}_S R^2\right) - 0.044 f_{B_q}^2\right]$$

* Useful to impose constraints on BSM building, M. Blanke et al, LHT

5. Future prospects and goals

Unquenched calculation of matrix elements corresponding to operators that only appear in BSM theories for $B^0 - \bar{B}^0$ and $D^0 - \bar{D}^0$ mixing (10%).

* Work in progress by **FNAL/MILC**

3.1. Tension in the CKM unitarity triangle

CKMfitter: $\langle B_q^0 | M_{12}^{SM+NP} | \bar{B}_q^0 \rangle = \Delta_q^{NP} \langle B_q^0 | M_{12}^{SM} | \bar{B}_q^0 \rangle$ V. Tisserand, 0905.1572

- * Tree-level mediated decays through a Four Flavor Change $(b \rightarrow q_i \bar{q}_j q_k)$ are SM
- * NP effects in oscillation parameters, weak phases, semi-leptonic asymmetries and B lifetime differences parametrized through Δ

- **3.2.** Measurement of $Br(B_{s,d} \rightarrow \mu^+\mu^-)$
 - * Scalar operators in the effective hamiltonian can enhance branching ratios to current experimental bounds (example: Higgs penguin).

- **3.2.** Measurement of $Br(B_{s,d} \rightarrow \mu^+ \mu^-)$
 - * Scalar operators in the effective hamiltonian can enhance branching ratios to current experimental bounds (example: Higgs penguin).
 - * In some models there is a strong correlation between $\mathcal{B}r(B_q \to \mu^+ \mu^-)$ and $\Delta M_{B_q^0}$ (example: some MSSM models.)
 - ** Testing the correlation predicted by those kind of models needs a reduction of errors in the theoretical prediction for ΔM_s^{SM}
 - \rightarrow need smaller lattice errors for the non-perturbative inputs.

- **3.2.** Measurement of $Br(B_{s,d} \rightarrow \mu^+ \mu^-)$
- # Tests of MFV: In the SM model and CMFV models, the following model independent relation hold with r = 1 Buras, PLB566 (2003) 115

$$\frac{\mathcal{B}r(B_s \to \mu^+ \mu^-)}{\mathcal{B}r(B_d \to \mu^+ \mu^-)} = \frac{\hat{B}_d}{\hat{B}_s} \frac{\tau(B_s)}{\tau(B_d)} \frac{\Delta M_s}{\Delta M_d} r$$

Any deviation from this relation $(r \neq 1)$ would indicate NP effects.

Supersymmetry, little Higgs models, extra space dimensions ... discussed in Buras, arXiv:0910.1032

LHT:
$$0.3 \le r \le 1.6$$
, RSc: $0.6 \le r \le 1.3$

* LHCb can reach the SM level for this branching ratio.

RBC/UKQCD, arXiv:1001.2023

* No extrapolation to the continuum

$$\xi = \frac{f_{B_s} \sqrt{B_{B_s}}}{f_{B_d} \sqrt{B_{B_d}}} = 1.13(12)$$

Comparison of final HPQCD, PRD80 (2009) 014503 and preliminary FNAL/MILC, PoS LATTICE 2009, 245 (2009)

