$K \rightarrow \pi \pi$ decays on the lattice

Lattice QCD Meets Experiment Workshop

April 27, 2010

Norman H. Christ
RBC and UKQCD Collaborations

Outline

- Introduction
- Operator renormalization
- $\pi-\pi$ final states methods
- 2008 RBC/UKQCD results using ChPT
- Lellouch-Luscher
- $\Delta I=3 / 2$
- $\Delta I=1 / 2$
- Outlook

Introduction

Low Energy Effective Theory

- Represent weak interactions by local four-quark Lagrangian
$\mathcal{H}^{(\Delta S=1)}=\frac{G_{F}}{\sqrt{2}} V_{u d} V_{u s}^{*}\left\{\sum_{i=1}^{10}\left[z_{i}(\mu)-\frac{V_{t d}}{V_{u s}^{*}} V_{t y}^{*} y_{u d}(\mu)\right] Q_{i}\right\}$

Four quark operators

- Current-current operators

$$
\begin{aligned}
& Q_{1} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A}\left(\bar{u}_{\beta} u_{\beta}\right)_{V-A} \\
& Q_{2} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A}\left(\bar{u}_{\beta} u_{\alpha}\right)_{V-A}
\end{aligned}
$$

- QCD Penguins

$$
\begin{aligned}
& Q_{3} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V-A} \\
& Q_{4} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A} \\
& Q_{5} \equiv\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A} \\
& Q_{6} \equiv\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}
\end{aligned}
$$

- Electro-Weak Penguins

$$
Q_{7} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{V+A}
$$

$$
Q_{8} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V+A}
$$

$$
Q_{9} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\alpha}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\beta}\right)_{V-A}
$$

$$
Q_{10} \equiv \frac{3}{2}\left(\bar{s}_{\alpha} d_{\beta}\right)_{V-A} \sum_{q=u, d, s} e_{q}\left(\bar{q}_{\beta} q_{\alpha}\right)_{V-A}
$$

Status

- The $\Delta I=1 / 2$ rule and $\varepsilon^{\prime} / \varepsilon$ are long-standing problems in particle physics.
- Accurate experimental result allows test of standard model CP violation.

$$
\operatorname{re}\left(\varepsilon^{\prime} / \varepsilon\right)=16.8(1.4) \times 10^{-4}
$$

- Natural target for lattice QCD.
- Even 10-20\% errors would be of great value.

Challenges for lattice methods

- Match lattice and continuum operators
- Eye diagrams contain quadratic divergences
- Difficult $\pi-\pi$ final state
- $\Delta I=1 / 2$ amplitudes require disconnected $\}$ Ultraviolet graphs

$K \rightarrow \pi \pi$: an important RBC/UKQCD goal

RBC	
- Y. Aoki	- C. Jung
- T. Blum	- R. Mawhinney
- N. H. Christ	- S. Ohta
- C. Dawson	- H. Peng
- T. Ishikawa	- D. Renfrew
- T. Izubuchi	- E. Scholz
- XD Jin	- A. Soni
- C. Jung	- R. Van de Water
- M. Lightman	- O. Witzel
- MF. Lin	- H. Yin
- Z. Lin	- R. Zhou
- Q. Liu	

UKQCD

- R. Arthur
- P. Boyle
- D. Brommel
- J. Flynn
- P. Fritzsch
- N. Garron
- E. Goode
- C. Kelly
- C. Maynard
- C. Sachrajda
- J. Zanotti

Operator Renormalization (NPR)

- Seven $\Delta S=1$ operators divide into three groups which mix:
- $\mathrm{O}^{(27,1)}$
- O_{7} and O_{8}
$-\mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{5}, \mathrm{O}_{6}$
- Accurately handled by RI/MOM (Chris Dawson, Shu Li, Nicolas Garron)
- Mixing with lower dimension operators is a small effect and easily treated.
- Effects of a single gluonic operator not yet included.

Two pion final state ChPT

SU(3) x SU(3) Chiral Perturbation Theory

- Use "soft-pion" methods to related $K \rightarrow \pi \pi$ to $K \rightarrow \pi$ and $K \rightarrow$ vac.
- Earlier RBC 2001 quenched calculations suggested this was promising (but gave $\varepsilon^{\prime} / \varepsilon=-4.0 \pm 2.310^{-4}$).
- However, quenched ChPT highly unphysical (Golterman and Pallante).
- Quenched result now replaced by $2+1$ flavor, full QCD calculation with lighter quarks.

Determination of α_{27}

- Fit to points with $\left(m_{v a l}+m_{r e s}\right)_{\text {avg }} \leq 0.013$
- PQChPT describes this data
- Large, ~100\% correction!?
- Similar large ChPT corrections as RBC/UQKCD, arXiv:0804.0473
- Fit does not work without $m_{K} m_{\pi} f_{K} f_{\pi}$ division.

Relative size of LO and NLO terms

- LO and NLO log terms are the same size.
- Consistent results if we divide by $m_{K} m_{\pi}\left(f_{K} f_{\pi}\right)^{2}$
- Double the difference between two fits to estimate systematic error.

SU(3) x SU(3) ChPT Critique

- Difficult to extrapolate to chiral limit and extract needed LEC's ($240 \mathrm{MeV} \leq m_{\pi} \leq 430 \mathrm{MeV}$)
- Unrealistic to then use those LEC's to reconstruct physical 495 MeV kaon.
- $\alpha_{1}^{3 / 2}=2.48(24)(39) 10^{-6}(\mathrm{GeV})^{4}$
- $\alpha_{6}{ }^{1 / 2}=-4.1(7)(41) 10^{-4}(\mathrm{GeV})^{4}$
- ChPT methods are too unreliable to be useful.

Two pion final state Lellouch-Luscher

Calculate $\pi-\pi$ final state directly

- Lellouch-Luscher method:
- Correct normalization for mixing of different l coming from cubic box.
- Correctly include $\pi-\pi$ interactions

- No issue with Watson theorem and Euclidean space!
- Overcome Maiani-Testa theorem by studying $1^{\text {st }}$ or $2^{\text {nd }}$ excited state with physical relative momentum.
- Further refinements:
- Twisted or G-parity boundary conditions - force $\pi-\pi$ to carry physical 205 MeV momentum. (Changhoan Kim)
- Non-zero cm mass momentum adjusted to make $\pi-\pi$ relative momentum physical. (Takeshi Yamazaki)

$\Delta \mathrm{I}=3 / 2$

$\Delta \mathrm{I}=3 / 2 \mathrm{~K} \rightarrow \pi \pi$

- Usual $\operatorname{SU}(2) \times S U(2)$ ChPT is not useful: two pions are hard
- New method of Flynn and Sachrajda (arXiv:0809.1229) and Bijnens and Celis, (arXiv:0906.0302)
- Perhaps ChPT is not needed!
- $I=2$ final state has no vacuum overlap.
- $I=2$ quantum number must be carried by four $I=1 / 2$ valence quarks.
- Twist only valence quarks Sachrajda and Villadoro (hep-lat/0411033).
- Safe to use slightly different valence and sea quark masses.

$\Delta I=3 / 2 \quad K \rightarrow \pi \pi$

(Matthew Lightman and Elaine Goode)

- Use new coarse 4.5 fm DSDR DWF ensembles.
- $m_{\pi}=250$ and 180 MeV
- $1 / a=1.4 \mathrm{GeV}$
- Finite a errors $\leq 8 \%$.
- Use physical valence light quark mass.
- Sea quark mass dependence of $I=2, K \rightarrow \pi \pi$ exected to be very small
- $m_{\text {sea }}=0.008 \rightarrow 0.004,<3 \%$ (Lightman, arXiv:0906.1847 [hep-lat])
- Use anti-periodic boundary condition in two space directions (30 configurations - highly preliminary!)
- $\boldsymbol{m}_{\pi}=145.8(7) \mathrm{MeV}$
- $\boldsymbol{m}_{K}=518(2)$
- $\boldsymbol{E}_{\pi \pi}=515(8) \mathrm{MeV}$
- A physical, on-shell, energy conserving K decay with 145 MeV pions and chiral fermions now possible!

$\Delta I=3 / 2 \quad K \rightarrow \pi \pi$

(Matthew Lightman and Elaine Goode)

$\pi \pi$ and K effective mass: $m_{\text {eff }}(t)=\ln (C(t) / C(t+1))$

$<\pi \pi\left|O^{(27,1)}\right| K>$ from 29 configurations

(Matthew Lightman and Elaine Goode)

$O^{(27,1)}$ quotient

$O^{(27,1)}$	$0.000926(59)$
$O^{(8,8)}$	$0.0187(11)$
$O^{(8,8) \mathrm{m}}$	$0.0625(38)$

$\Delta \mathrm{I}=\mathbf{1} / \mathbf{2}$

$\Delta I=1 / 2 K \rightarrow \pi \pi$ (Qi Liu)

- I = 0 final state overlaps with vacuum.
- Disconnected diagrams require statistical cancellation to realize $e^{-2 m_{\pi} t}$ decrease.
- Begin $16^{3} \times 32,1 / a=1.73 \mathrm{GeV}, m_{\pi}=420 \mathrm{MeV}$ high-statistics experiments
- Calculate 32 propagators for each time slice
$-I=0, \pi-\pi$ scattering
- $\eta-\eta$ masses and mixing
$-K \rightarrow \pi \pi$

$I=0, p=0, \pi-\pi$ scattering (Qi Liu)

- 120 configurations (wall source)
- $E_{\pi \pi}=0.451$ (33)
- 30 configurations (split source)
$-E_{\pi \pi}=0.455(15)$
$-2 m_{\pi}=0.4866(24)$
- Attraction too strong to use Luscher's formulae

- 4x needed inversions
- 4x overall statistical gain
- Care needed to avoid unwanted momentum

$\eta-\eta^{\prime}$ masses and mixing (Qi Liu) $\eta-\eta^{\prime}$ effective masses

- Use three $16^{3} \times 32$ dyamical configurations.
- $m_{\pi}=421,561$ and 672 MeV
- $\bar{u} u+\bar{d} d$ and $\bar{s} s$ are NOT eigenstates!
- arXiv:1002.2999 [hep-lat]

Lattice Meets Experiment , April 27, 2010

$\Delta I=1 / 2 K \rightarrow \pi \pi$ (Qi Liu)

- Code 50 different contractions
- Use Ran Zhou's deflation code
- For each of $100(\rightarrow 400)$ configurations invert with source at each of 32 times.

type3

Divergent O_{6} matrix elements (Qi Liu)

- Strong "penguin" matrix elements: divergent $\bar{s} \gamma^{5} d$ term
- Vanishes on-shell
- Explicit subtraction needed

O_{6}. sep. 12 (type 4)

Lattice Meets Experiment , April 27, 2010

Conclusion

- Calculation of re A_{2} and im A_{2} to $\sim 10 \%$ a realistic 1-2 year goal
- re A_{0} and im A_{0} more difficult
- Theoretical issues are resolved.
- Disconnected diagrams easiest in this $\pi-\pi$ case.
- Faster computer hardware needed for definitive results: Next generation IBM BG/Q machine should be sufficient!
- Expect 20% result for $\Delta I=1 / 2$ rule and $\varepsilon^{\prime} / \varepsilon$ in 2-3 years!

