$K \rightarrow \pi \pi$ decays on the lattice

Lattice QCD Meets Experiment Workshop

April 27, 2010

Norman H. Christ

RBC and **UKQCD** Collaborations

Outline

- Introduction
- Operator renormalization
- $\pi \pi$ final states methods
 - 2008 RBC/UKQCD results using ChPT
 - Lellouch-Luscher
- $\Delta I = 3/2$
- $\Delta I = 1/2$
- Outlook

Introduction

Lattice Meets Experiment , April 27, 2010 (3)

Low Energy Effective Theory

Four quark operators

Current-current operators

 $Q_1 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} (\bar{u}_{\beta} u_{\beta})_{V-A}$ $Q_2 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} (\bar{u}_{\beta} u_{\alpha})_{V-A}$

• QCD Penguins

$$Q_{3} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V-A}$$
$$Q_{4} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$
$$Q_{5} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V+A}$$
$$Q_{6} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

• Electro-Weak Penguins $Q_{7} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\beta})_{V+A}$ $Q_{8} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\alpha})_{V+A}$ $Q_{9} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\beta})_{V-A}$ $Q_{10} \equiv \frac{3}{2}(\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} e_{q}(\bar{q}_{\beta}q_{\alpha})_{V-A}$

Lattice Meets Experiment, April 27, 2010 (5)

Status

- The $\Delta I = \frac{1}{2}$ rule and $\frac{\varepsilon}{\varepsilon}$ are long-standing problems in particle physics.
- Accurate experimental result allows test of standard model CP violation. $re(\varepsilon'/\varepsilon) = 16.8 (1.4) \times 10^{-4}$
- Natural target for lattice QCD.
- Even 10-20% errors would be of great value.

Challenges for lattice methods

- Match lattice and continuum operators
- Eye diagrams contain quadratic divergences
- Difficult $\pi \pi$ final state
- $\Delta I = 1/2$ amplitudes require disconnected graphs

Lattice Meets Experiment, April 27, 2010 (7)

$K \rightarrow \pi \pi$: an important RBC/UKQCD goal

RBC

- Y. Aoki
- T. Blum
- N. H. Christ
- C. Dawson
- T. Ishikawa
- T. Izubuchi
- XD Jin
- C. Jung
- M. Lightman
- MF. Lin
- Z. Lin
- Q. Liu

- C. Jung
- R. Mawhinney
- S. Ohta
 - H. Peng
 - D. Renfrew
 - E. Scholz
 - A. Soni
 - R. Van de Water
- O. Witzel
 - H. Yin
 - R. Zhou

- UKQCD – R. Arthur
 - P. Boyle
 - D. Brommel
 - J. Flynn
 - P. Fritzsch
 - N. Garron
 - E. Goode
 - C. Kelly
 - C. Maynard
 - C. Sachrajda
 - J. Zanotti

Operator Renormalization (NPR)

• Seven $\Delta S = 1$ operators divide into three groups which mix:

- O^(27,1)

- O_7 and O_8

 $- O_2, O_3, O_5, O_6$

- Accurately handled by RI/MOM (Chris Dawson, Shu Li, Nicolas Garron)
- Mixing with lower dimension operators is a small effect and easily treated.
- Effects of a single gluonic operator not yet included.

Two pion final state ChPT

Lattice Meets Experiment, April 27, 2010 (10)

SU(3) x SU(3) Chiral Perturbation Theory

- Use "soft-pion" methods to related $K \rightarrow \pi\pi$ to $K \rightarrow \pi$ and $K \rightarrow vac$.
- Earlier RBC 2001 quenched calculations suggested this was promising (but gave $\varepsilon'/\varepsilon = -4.0\pm 2.3 \ 10^{-4}$).
- However, quenched ChPT highly unphysical (Golterman and Pallante).
- Quenched result now replaced by 2+1 flavor, full QCD calculation with lighter quarks.

Determination of α_{27}

- Fit to points with $(m_{val+} m_{res})_{avg} \le 0.013$
- PQChPT describes this data
- Large, ~100% correction!?
- Similar large ChPT corrections as RBC/UQKCD, arXiv:0804.0473
- Fit does not work without $m_K m_\pi f_K f_\pi$ division.

Relative size of LO and NLO terms

- LO and NLO log terms are the same size.
- Consistent results if we divide by $m_K m_{\pi} (f_K f_{\pi})^2$
- Double the difference between two fits to estimate systematic error.

SU(3) x SU(3) ChPT Critique

- Difficult to extrapolate to chiral limit and extract needed LEC's (240 MeV $\leq m_{\pi} \leq$ 430 MeV)
- Unrealistic to then use those LEC's to reconstruct physical 495 MeV kaon.
- $\alpha_1^{3/2} = 2.48 \ (24)(39) \ 10^{-6} \ (\text{GeV})^4$
- $\alpha_6^{1/2} = -4.1(7)(41) \ 10^{-4} \, (\text{GeV})^4$
- ChPT methods are too unreliable to be useful.

Two pion final state Lellouch-Luscher

Lattice Meets Experiment, April 27, 2010 (15)

Calculate π - π final state directly

- Lellouch-Luscher method:
 - Correct normalization for mixing of different *l* coming from cubic box.
 - Correctly include π π interactions
 - No issue with Watson theorem and Euclidean space!
 - Overcome Maiani-Testa theorem by studying 1st or 2nd excited state with physical relative momentum.
- Further refinements:
 - Twisted or G-parity boundary conditions force π π to carry physical 205 MeV momentum. (Changhoan Kim)
 - Non-zero cm mass momentum adjusted to make π - π relative momentum physical. (Takeshi Yamazaki)

$$p = \pi/L$$

 $\Delta I = 3/2$

Lattice Meets Experiment, April 27, 2010 (17)

$\Delta \mathbf{I} = 3/2 \quad \mathbf{K} \rightarrow \pi \, \pi$

- Usual SU(2) x SU(2) ChPT is not useful: two pions are <u>hard</u>
 - New method of Flynn and Sachrajda (arXiv:0809.1229) and Bijnens and Celis, (arXiv:0906.0302)
 - Perhaps ChPT is not needed!
- I = 2 final state has no vacuum overlap.
- *I* = 2 quantum number must be carried by four *I*=1/2 valence quarks.
 - Twist only valence quarks Sachrajda and Villadoro (hep-lat/0411033).
 - Safe to use slightly different valence and sea quark masses.

$\Delta I = 3/2 \ K \rightarrow \pi \, \pi$

(Matthew Lightman and Elaine Goode)

- Use new coarse 4.5 fm DSDR DWF ensembles.
 - $-m_{\pi} = 250 \text{ and } 180 \text{ MeV}$
 - 1/a = 1.4 GeV
 - Finite *a* errors $\leq 8\%$.
- Use physical valence light quark mass.
 - Sea quark mass dependence of $I=2, K \rightarrow \pi \pi$ exected to be very small
 - m_{sea} = 0.008 → 0.004, < 3% (Lightman, arXiv:0906.1847 [hep-lat])
- Use anti-periodic boundary condition in two space directions (30 configurations highly preliminary!)
 - $m_{\pi} = 145.8(7) \text{ MeV}$
 - $m_K = 518(2)$
 - $E_{\pi\pi} = 515(8) \text{ MeV}$
- A physical, on-shell, energy conserving *K* decay with 145 MeV pions and chiral fermions now possible!

$\Delta I = 3/2 \quad K \rightarrow \pi \pi$ (Matthew Lightman and Elaine Goode)

 $\pi\pi$ and K effective mass: $m_{\text{eff}}(t) = \ln(C(t) / C(t+1))$

Lattice Meets Experiment, April 27, 2010 (20)

 $< \pi \pi | O^{(27,1)} | K >$ from 29 configurations

(Matthew Lightman and Elaine Goode)

 $O^{(27,1)}$ Effective mass

Lattice Meets Experiment, April 27, 2010 (21)

 $\Delta I = 1/2$

Lattice Meets Experiment, April 27, 2010 (22)

$\Delta I = 1/2 \quad K \rightarrow \pi \pi$ (Qi Liu)

- I = 0 final state overlaps with vacuum.
- Disconnected diagrams require statistical cancellation to realize $e^{-2m\pi t}$ decrease.
- Begin 16³ x 32, 1/a = 1.73 GeV, $m_{\pi} = 420$ MeV high-statistics experiments
 - Calculate 32 propagators for each time slice
 - $-I = 0, \pi \pi$ scattering
 - $-\eta \eta'$ masses and mixing
 - $-K \rightarrow \pi \pi$

$I = 0, p = 0, \pi - \pi$ scattering (Qi Liu)

• 120 configurations (wall source)

 $-E_{\pi\pi} = 0.451(33)$

• 30 configurations (split source)

$$-E_{\pi\pi}=0.455(15)$$

$$-2 m_{\pi} = 0.4866(24)$$

- Attraction too strong to use Luscher's formulae

- 4x needed inversions
- 4x overall statistical gain
- Care needed to avoid unwanted momentum

$\eta - \eta'$ masses and mixing (Qi Liu) $\eta - \eta'$ effective masses

- Use three 16³ x 32 dyamical configurations.
- $m_{\pi} = 421, 561 \text{ and } 672 \text{ MeV}$
- $\overline{u}u + \overline{d}d$ and $\overline{s}s$ are **NOT** eigenstates!
- arXiv:1002.2999 [hep-lat]

$\Delta I = 1/2 \quad K \rightarrow \pi \pi$ (Qi Liu)

- Code 50 different contractions
- Use Ran Zhou's deflation code
- For each of 100 (→ 400) configurations invert with source at each of 32 times.

(26)

Divergent O₆ matrix elements (Qi Liu)

- Strong "penguin" matrix elements: divergent $\overline{s\gamma}^5 d$ term
- Vanishes on-shell
- Explicit subtraction needed

*O*₆ sep. 12 (type 3)

Conclusion

- Calculation of re A₂ and im A₂ to ~10% a realistic 1 2 year goal
- re A_0 and im A_0 more difficult
 - Theoretical issues are resolved.
 - Disconnected diagrams easiest in this $\pi \pi$ case.
 - Faster computer hardware needed for definitive results: Next generation IBM BG/Q machine should be sufficient!
- Expect 20% result for $\Delta I = \frac{1}{2}$ rule and $\frac{\varepsilon}{\varepsilon}$ in 2 3 years!