Heavy Flavors Experiments and LQCD

Vera Lüth

SLAC – Stanford University

A brief – incomplete – overview

Emphasis on experimental capabilities now and in the future

Potential to Improve Precision Measurements

- CKM Matrix Elements
- Mixing and phases, Δm_d , Δm_s , Bag Constants $B_{Bd} B_{Bs} \xi$
- CP asymmetries, angles $\alpha \beta \gamma$,
- Form Factors and Decay Constants, f_D f_{Ds} f_B f_{Bs}
- Rate Decays: Penguin Decays: $b \rightarrow s/d\gamma$, $b \rightarrow s/d \ell^+ \ell^-$
- Quark Masses m_b m_c

Not considered: here

- ϵ_{K} , f_{π} f_{K} B_{K}
- Spectroscopy

Overview of Current and Future Experiments

e+e-

- Modest rates, need high integrated luminosity
- high S/B, open trigger, large solid angle coverage
- Good track, photon detection and PID
- "reconstruction of neutrino" possible, inclusive measurements
- At Y(4S) and (3770), coherent production of BB or DD.
- For rare decays, detailed understanding of background become important

pp and pp

- Very high production rates of D and B states
- HF small fraction of x-section: needs selective triggers, high backgrounds
- Normalization, calibration of acceptance and resolution, challenging
- Longer decay paths: vertex separation and precision lifetime measurements
- Focus on Bs and on very rare decays with distinctive signatures.
 Program will develop and new ideas will come up!

BESII @ BEPCII – *τ*-charm Factory

- Symmetric e^+e^- Collider, 2.0 4.6 GeV, $L=10^{33}$ cm⁻²s⁻¹
- Physics program
 - Spectroscopy: Charmonia, light mesons, exotic states (glueballs, etc.)
 - D, Ds: hadronic, leptonic, s.l. decays: Vcs, Vcd, FF, mixing and CP violation
 - Rare decays
- Current sample: $200M \Psi(1S)$, $100M \Psi(2S)$
 - $M(h_c) = 3525.40 \pm 0.40 \pm 0.18 \text{ MeV},$
 - $\Gamma(h_c) = 0.75 \pm 0.45 \pm 0.28 \text{ MeV}$

	CMS Mass	Peak Lum.	σ	No. of Events/year
J/ψ	3.097	0.6	3400	$10 imes 10^9$
$\tau^+\tau^-$	3.670	1.0	2.4	$12 imes 10^6$
$\psi(2S)$	3.686	1.0	640	3.2×10^9
$D^0 \overline{D}{}^0$	3.770	1.0	3.6	$18 imes 10^6$
D^+D^-	3.770	1.0	2.8	$14 imes 10^6$
$D_s D_s$	4.030	0.6	0.32	$1.0 imes10^6$
$D_s D_s$	4.170	0.6	1.0	$2.0 imes 10^6$

1 MeV

B Factories – SuperB or KEK_BII When? where?

- Asymmetric e+e- Collider, 9.4 11.5 GeV L=(5-10)x 10³⁵ cm ⁻² s⁻¹
 3.7 4.5 GeV L= 10³⁴ cm ⁻² s⁻¹
- Search for New Physics in B, D, and τ decays: expect: 10-50/ab
 - CKM: angles γ , β , α , Δm_d ,
 - Penguin decays:

Rad:
$$B^0 \rightarrow K^*\gamma$$
, $B \rightarrow Xs\gamma$, $Xd\gamma$
EW: $B^0 \rightarrow K^*I+I-$, $K^*\nu\nu$ $B \rightarrow Xs \ \ell^+\ell^-$, $Xd \ \ell^+\ell^-$

- Very Rare Decays: $B^0 \rightarrow \ell^+ \ell^-$, $B^+ \rightarrow \ell^+ \nu$, LF Violations
- Charm:
- Spectroscopy

D⁰ mixing, CP Violation, decays constants and FF Charmonium, Exotics, charm mesons

CDF and D0 @ Tevatron

CDF and D0 were not designed for HF physics, but have a strong HF program! Results available for 4/fb! Expect 10/fb total/experiment.

- Very large x-section for charm and beauty: B, Bs, Bc, Λb , Σb ,
- Sophisticated triggers: high pt tracks/leptons, displaced tracks and vertices
- HF Physics Program
 - B⁰ Mixing and CP Violation in Bs system, update for 5.7/fb soon!
 - FCNC Very rare decays: $B \rightarrow K^* \mu + \mu -$, $B_s \rightarrow \Phi \mu + \mu -$, , $Bs \rightarrow \mu + \mu -$,...
 - Lifetimes and spectroscopy: $\Lambda_b \Omega_b$, Σ_b , X(3872), Y(4140), ...

LHCb @ LHC

- pp Collider, 7-14 TeV, L=10³¹⁻³³cm⁻²s⁻¹: expect: 2010: 0.2/fb 2011: 1/fb
- **Physics Program**
 - CKM: phase ϕ_{sr} angles γ , β_{s} (β , α), Δm_{d} , Δm_{s}
 - Rad: $B^0 \rightarrow K^* \gamma$, $B^0_s \rightarrow \phi \gamma$ Penguin decays: EW: $B^0 \rightarrow K^* \mu^+ \mu^ B^0_s \rightarrow \phi \ \mu^+ \mu^-$ Very Rare Decays: $B^0 \rightarrow \mu^+ \mu^- \qquad B_s{}^0 \rightarrow \mu^+ \mu^-$

- D0 mixing, CP Violation, Charm:
- Spectroscopy, Semileptonic B and D decays??

LHCb: Measurement of B_s Oscillations

V. Lüth

Projections for Future Measurements

- Exclusive semileptonic D and B decays
- Leptonic D and B decays
- CP Violation in B_d, B_s and D⁰ mesons
- Very rare decays
- Quark Masses

Exclusive D \rightarrow (K, π) lv: BF and FF

- Primary interest of BF and FF measurements is
 - Measurements of |Vcs| and |Vcd|
 - Validate of QCD calculations, lattice and other,
 - understand relation of D and B decay dynamics, for both, transition to scalar and to vector mesons
 - Important for |Vub| and |Vcb| extraction from B decays

Decay	Exp.	Ecm [GeV]	Lum [1/fb]	σ(M _{pole}) [MeV]	σ(α _{BK})	σ (f+(0))	
D →Kev	CLEOc	3.77	0.8	20/11	0.03/ 0.01	1.0%/ 0.7%	stat/syst
	BABAR	10.58	75	12/15	0.023/ 0.029	1.0%/ 0.7%	
D →π ev	CLEOc	3.77	0.8	20/10	0.07/ 0.02	2.9%/ 0.8%	
	Belle	10.58	282	80/40	0.21/ 0.10	3.2%/ 4.8%	
	Super_B	3.77	150			0.3%/ 0.1%	

Exclusive D⁺ \rightarrow K⁻ π^+ e⁺ ν , D_s⁺ \rightarrow K⁺K⁻ e⁺ ν : BF and FF

- With larger samples (250,000 signal events) detailed study of Axial Vector FF becomes possible!
- D⁺ and D⁺_s decays show similar results, except for r_V ??
- Measurement of P wave contribution, S wave amplitude and phase.
- A very complex analysis 5-Dim binned likelihood fit !
- Q: Is the pole ansatz adequate?
- Only quenched LQCD calculations available, with stated error of 10%

Decay	Exp.	Ecm [GeV]	Lum [1/ab]	σ (A 1(0))	σ (r ₂)	σ(r _v)
Ds→KKev	BABAR	10.58	0.214	5%	13%	5%
$D \rightarrow K \pi ev$	BABAR	10.58	0.350	1.6%	3.8%	2.7%
Ds→KKev	Super_B	10.58	5.0	1%	3%	1.2%
$D \rightarrow K \pi e v$	Super_B	10.58	5.0	0.5	1.0%	1.0%

Exclusive B \rightarrow D*lv, Dlv: FF and |Vcb|

$D*I_V$ – untagged

- Current FF measurements only with ~100/fb,
- only CLEO and BABAR have fully 4-Dim measurements of R1, R2, ρ^2
- Sizable backgrounds, Purity =0.6-0.8, in the future: restrict to cleaner decay channels
- Puzzling inconsistency of BF Measurements
- BABAR: $F(1)|Vcb| = (34.4 \ 0.3_{stat} \ 1.1_{syst}) \ 10^{-3} \ 3.3\%$ $F(1)*=0.921 \ 0.024 \ 2.6\%$ HFAG $F(1)|Vcb| = (35.94 \ 0.10_{stat} \ 0.52_{syst}) \ 10^{-3} \ 1.5\%$
- Dlv hadronic tags
 - Sizable background reduced by hadronic tag
 - Extrapolation to w=1 impacted by p_D^3 , need prediction for w>1
 - BABAR: G(1) $|Vcb| = (42.3 \ 1.9_{stat} \ 1.0_{syst}) \ 10^{-3} \ 5.1\%$ G(1)*=1.074 0.024 2.2% HFAG: G(1) $|Vcb| = (42.3 \ 0.7_{stat} \ 1.3_{syst}) \ 10^{-3} \ 3.5\%$
- Future
 - With higher stats. Fully 4-dim analysis should settle FF amd BF issues.
 - Significant improvements possible,
 - Primarily detector and background limited, also BF for B s.l. and D had. decays
 - At SuperB. Syst. Error might be reduced to 1% level, tagged events should help
 - Lattice calculations for w>1 helpful, especially for DI_{V}
 - Q. Will LHCb contribute??

$|V_{cb}|$ Measurements from $B \rightarrow D^{(*)} \ell^+ \nu$ Decays

$B \rightarrow D^{(*)} lv$: Measurements of BF and $|V_{cb}|$

 \mathbf{D} 1...

D* lv

Ľ						Tag	[1/ab]	Yield	S/B	stat	svst
Tag	L [1/ab]	Yield Kevts	S/B	stat [%]	syst [%]	lug		Kevts	378	[%]	[%]
No	0.4	100	1.0	2.6	2.8	Νο	0.08	53	1.5	1.1	3.2
No	5.0	720	2.0	1.1	1.4	No	1.0	530	2.3	0.5	1.7
had	0.4	3	1.0	4.4	3.3	s.l.	1.0	30	5	0.9	1.7
had	5.0	32	3.0	1.4	1.2	s.l.	5.0	150	2	0.5	0.9
had	50	300	4.0	0.4	0.5	had	5.0	25	10	0.8	1.3
						had	50	250	10	0.3	0.7

Current measurements limited by systematics Improvements of S/B, background and detector simulations require big effort, but are doable!

FF parameterization by CLN widely adopted. Are there alternatives?V. LüthUS LQCD 2010

SM Pro

ediction	$M_H~({ m GeV})$
500	

BABAR *)	Lum [1/ab]	Stat.	Syst.	Total Error	Est. # events
$B^+ \rightarrow D\tau v$	0.2	29%	13%	32%	59
	5	6%	3%	7%	1475
	50	2.5%	1.5%	3%	15000

*) Only for $\tau + \rightarrow \ell + \nu \nu$ decays, $\tau \rightarrow h + \nu$ add 2x more events!

Exclusive $B \rightarrow (\pi, \eta, \rho, \omega)$ *k*, FF and $|V_{ub}|$

- $\pi l v$
 - Current measurements based on 400/fb (No tag), 600/fb (tagged)
 - Challenge for detector and neutrino reconstruction ~4%
 - more restricted solid angle at asymmetric colliders
 - 40% of hadronic B decays unknown, use jetset fragmentation!
 - Very sizable backgrounds reliance on MC simulation for subtractions
 - non-BB 1-2 % not well studied
 - $X_c \ell v$, 1-2 % poor BF and FF knowledge
 - other $X_u \ell_V$, not well measured, difficult to separate from signal
- η,ρ,ω lν
 - Current measurements based on 400/fb (No tag), 600/fb (tagged)
 - larger combinatorial backgrounds than πI_{v} . q² measurements soon!
- Future
 - background reductions with tagged events,
 - FF measurements require much larger luminosity
 - LQCD predictions with higher precision needed

Error Assessment for |Vub| :

B→πlυ	L [1/ab]	Yield	S/B	stat	syst
No tag	0.35	12,000	0.25	1.8%	5.0%
No tag	1.0	30,000	0.5	1.0%	2.8
No tag	5.0	150,000	0.6	0.5%	1.8
s.l. tag	0.25	100	1.5	14%	5.0
s.l. tag	1.0	400	3	7%	2.9
s.l. tag	5.0	2,000	3	3.5%	2.0
Had tag	0.6	80	4	13%	3.3
Had tag	5.0	600	8	5%	1.5
Had tag	50	6,000	8	1.5%	0.3

Uncertainties

Detector simulation

- Particle losses K_L , ν
- Limited solid angle
- Inefficiencies

Backgrounds, BF and FF

- Non-BB processes
- Other $B \rightarrow X_u I_v$ decays
- $B \rightarrow X_c I_V$ decays
- Combinatorial BG

FF parameterization FF Normalization

Leptonic D decays: $D^+ \rightarrow \mu^+ \nu$, $D_s^+ \rightarrow (\tau, \mu)^+ \nu$: f_{Ds}/f_D

• Measurements of BF and Decay Constants $f_{\rm Ds}/f_{\rm D}$

- Best results for tagged samples recorded near threshold, 3.77GeV or 4.17GeV
- Currently statistics limited
- Systematic error dominated by backgrounds ($D^+ \rightarrow K_L e^+ v$) and tag rate
- At Y(4S), restricted solid angle results in need for extensive difficult background rejection, and limited resolution.

BABAR and Belle have published results, but systematic errors are 2x compared to CLEOc, plus normalization problem.

- Super_B and KEK_B could use enormous statistics at Y(4S), plans to take data near 4 GeV!
- LHCb is unlikely to contribute here!

Leptonic D decays: $D^+ \rightarrow \mu^+ \nu$, $D_s^+ \rightarrow (\tau, \mu)^+ \nu$: f_{Ds}/f_D

Experiment	Ecm [GeV] 3.77	Ecm [GeV] 4.17	σ(f _{DS} /f _D)	
CLEO _c	0.75/fb	0.75/fb	5%	
BESIII	20/fb	12/fb	1-2%	
Super-B	150/fb	200/fb	< 1%	Also Y(4S)

- $f_{\rm Ds}/f_{\rm D}$ is key ingredient to |Vts|/|Vtd| extracted from $B_{\rm d}$ and $B_{\rm s}$ mixing;
- LQCD predicts double ratio

$$\xi = \frac{f_{Bs} \sqrt{B_{Bs}}}{f_{Bd} \sqrt{B_{Bd}}} = 1.210_{-0.035}^{+0.047}$$

- If we assume $f_{Bs}/f_{Bd} \approx f_{Ds}/f_D$ holds to within a few %, we still need from LQCD : $B_{Bs}/B_{Bd} \approx 1$
- Both stat. and syst. errors can be reduced very significantly with larger data sets.
- Important for CKM tests and |Vub| and |Vcb| extraction from B decays !

V. Lüth

Leptonic B decays: $B^+ \rightarrow (\mu, \tau)^+ \nu$, BF and f_B

Purely leptonic processes sensitive to SM parameters and NP,

$$\mathbf{B}\mathbf{F}_{\tau \upsilon} = \mathbf{C} \left(1 - \frac{\mathbf{m}_{\ell}^2}{\mathbf{m}_{\mathrm{B}}^2}\right) \times \left(\mathbf{f}_{\mathrm{B}}^2 |\mathbf{V}_{\mathrm{ub}}|^2\right) \tau_{\mathrm{B}} \xi_{\mathrm{H}}, \quad \xi_{\mathrm{H}} = \left(1 - \frac{\mathbf{m}_{\mathrm{B}}^2}{\mathbf{m}_{\mathrm{H}}^2} \tan\beta\right)$$

At 50/ab, a m_H=500GeV with tanβ=30, would give a w very significant deviation from SM.

Belle	Lum [1/ab]	Stat.	Syst.	Total Error	Est. # Events
$B^+ \rightarrow \tau^+ v$	40%	28%	27%	40%	24±7
	5	8%	8%	12%	300±40
	50	3%	3%	4%	3,000±120
$B^+ \rightarrow \mu^+ \nu$	5			20%	30 ± 6
	50			12%	280 ± 35

Very Rare Decays $B_s \rightarrow \mu^+ \mu^-$, $K^* l^+ l^-$, $K^* \gamma$

Current samples too small for SM rates, but test NP processes.

	Belle	SuperB	SuperB	Tevatron *)	LHCb	LHCb
Observable	0.5/ab	5/ab	50/ab	3.7/fb	2/fb	10/fb
B _s →µ+µ- (6 10 ⁻⁹)				4.3 10 ⁻⁸	>5σ	10%
A _{CP} (B→K*I+I⁻)		11%	1.5%			1.5%
A _{FB} (B→K*I+I⁻)s ₀		15%	9%		0.5 MeV	
B0 →K ^{*0} νν			35%			
$B+\rightarrow K^+\nu\nu$			30%			
$B \rightarrow K^* \gamma / \Phi \gamma$						
$B \rightarrow \rho \gamma$	20%		5%			

*) CDF: @95% C.

D0: projects sensitivity of 5.3×10^{-8} @ 95% C.L.

SM expectations: 3.3x10⁻⁸

Mixing and CP Violation in B_{d/s} Decays

Uncertainties of individual experiments

	Belle	SuperB	SuperB	CDF	LHCb	LHCb
Observable	0.5/ab	5/ab	50/ab	1/fb	2/fb	10/fb
ρ	20%		3.4%			
η	16%		1.7%			
α (ππ,ρρ,ρπ)		2°	<1°		10°	4.5°
sin2β	0.026	0.016	0.012		~0.02	~ 0.01
γ (DK,combined)		6°	1.5°		5°-10°	2.4°
Δm_d [1/ps]	0.013					
Δm_s [1/ps]				0.12	0.003	
Φ _s (B _s →ΨΦ)					0.023	0.01

 Δm_s and Φ_s (B_s $\rightarrow \Psi \Phi$) will be the primary goals of LHCb

Mixing and CP Violation in D Decays

Uncertainties of individual experiments

	Belle	SuperB	SuperB	LHCb	LHCb
Observable	0.5/ab	5/ab	50/ab	2/fb	10/fb
x	0.25%	0.12%	0.9%		0.25%
У	0.16%	0.10%	0.05%		0.05%
δ(Κπ)	10 °	6°	4 ⁰		
q/p	0.16	0.10	0.05		
Φ [rad]	0.13	0.08	0.05		
A _D	2.4%	1%	0.3%		

Great potential for precision studies of Charm sector! No unquenched lattice results yet?!

Conclusions and Outlook

- Current experiments come to a close, having charted the way for future measurements,
 - CLEOc, BESII, KLOE, BABAR, Belle, CDF, D0
- New experiments will have enormous volumina of data
 - BESIII, LHCb, SuperB or KEKB II,
 - Primary Focus: beyond the standard model often precision tests of SM, search for very rare processes above SM
 - Need excellent understanding of detector/simulation
 - Absolute measurements challenging, except at Y(4s) and $\Psi(3770)$.
- Understanding of physics of background
 - predicted distributions need to checked with data
 - Calibration of data selection processes
- Thorough assessment of systematic errors beyond MC and PDG!
 - MC is a great tool, but is does not replace thinking and independent assessments!
 - MC only helps with things we know, but less so with unknown effects!

Conclusions and Outlook

Understanding the physics of the signal and backgrounds

- Transformation of matrix elements into event generators!
- Not always trivial collaboration with theorists and experimenters desirable!
- Theory input to extract fundamental parameters
 - LQCD has very high credentials, but requires substantial resources slow!
 - Scrutiny of theoretical assumptions and methods, uncertainties and biases!
 - Selection/Comparison of methods by different groups workshop are critical!
 - Documentation of values for all input parameters important!

Questions to LQCD Experts

Leptonic and semileptonic D and B decays

- Can we extend phase space for FF predictions to full phase space?
 Predictions for decays to Vector and Axial Vector states, as fct. of q²??
- Predictions for other decay modes? $B \rightarrow (\rho, \omega, \eta) \ Iv$? $D \rightarrow K^* \ Iv, D_s \rightarrow K \ Iv$??
- How do we relate predictions for D to B decays ?
 Which Ratios? Leptonic to semileptonic rates?
- Penguin decays
 - Can we relate $B \to \pi I \nu$ FF to $B \to K^* \gamma$ or $B \to K^* I^+ I^-$? $B \to K^* \gamma$
 - Can LQCD predict BF and asymmetries ACP or AFB?
 - Other rare decays?
- Spectroscopy
 - What are the most critical measurements?
 - Onion or excited D and B meson masses

Quark Masses

 There are now very precise predictions of m_c and m_b from sum rules (KA Group) Can lattice contribute? How will the lattice masses relate to those needed for comparison with experiments?

V. Lüth

$|V_{cb}|$ Extraction from Global OPE Fits to Moments

 $1.4\%_{\text{theory}}$)

Issues

- Stated theory error now considered generous, overall understanding improved in past 5-10 years
- Major effort underway to improve higher order QCD terms

HFAG Result of Global Fit to 64 moments (kinetic scheme)

• $\alpha_{s^2} \mu_{\pi^2}$: likely to impact m_b

 $|V_{cb}| = (41.31 \times 10^{-3} (1 \ 1.2\%_{fit}))$

 $m_{\rm b} = 4.678 \quad 0.051 \text{ GeV}$

 $\mu_{\pi}^2 = 0.428 \quad 0.044 \text{ GeV}^2$

 $m_b - m_c = 3.427 \quad 0.021 \text{ GeV}$

- $\alpha_{s^2} \beta_0$: mostly impacts total rate and thus $|V_{cb}|$
- m_b^4 : terms expected to be small
- Local OPE for $B \rightarrow X_s \gamma$ on less solid ground, especially with cut $E_{\gamma} > 1.8 \text{ GeV}$
- unavoidable correlations among moments treatment somewhat ad hoc! impact quark masses
- Results on m_b are crucial input to $|V_{cb}|$ extraction

Global Fit to Moments: b-quark mass

- Fits would greatly benefit from additional external input, primarily m_b and m_c
- In kinetic scheme Γ ~ m_b²(m_b-m_c)³, fits to moments show linear relation between m_b and m_c!
- Confinement Quark masses are not physical observables, but defined as formal parameters in QCD action – choice of schemes adapted to specific processes
- Recent update of sum rule calculations at NNNLO result in (MS scheme)

 $m_b(m_b) = 4.163$ 0.016 GeV !! $m_c(m_c) = 1.279$ 0.013 GeV !!

Chertyrkin et al. irXiv: 0907.2120 (2009)

- Currently, translation to kin. Scheme increases error to 40 MeV!
 Still smaller than current PDG error!
- Goal is to fit masses in MS scheme directly, so conversion error can be avoided!

Quark Masses from Relativistic Sum Rules: $m_b \& m_c$

Analyses with smallest errors I:

n	m_c (3 GeV)	exp	α_s	μ	np	total
1	986	9	9	2	1	13
2	976	6	14	5	0	16
3	978	5	15	7	2	17
4	1004	3	9	31	7	33

n	$m_b(10{ m GeV})$	exp	α_s	μ	total	$m_b(m_b)$
1	3597	14	7	2	16	4151
2	3610	10	12	3	16	4163
3	3619	8	14	6	18	4172
4	3631	6	15	20	26	4183

Chetyrkin, Kuhn, Meier, Meierhofer, Marquard Steinhauser (2009)

- $m_{\rm C}(3\,{\rm GeV}) = 986 \pm 13\,{\rm MeV}$
- $m_{\rm C}(m_{\rm C}) = 1279 \pm 13 \,{\rm MeV}$
- $m_{\rm b}(10\,{\rm GeV}) = 3610\pm16\,{\rm MeV}$

•
$$m_{\rm b}(m_{\rm b}) = 4163 \pm 16 \,{\rm MeV}$$

- theory predictions and <u>errors</u> taken for missing data
- $\alpha_s(\mu)$ and $\overline{m}_Q(\mu)$ taken as theory parameters, $\mu = 2 4$ GeV, fixed order

Analyses with smallest errors II:

HPQCD, Chetyrkin, Kuhn, Steinhauser, Sturm (2008)

• Lattice data for moments instead of experimental data (lattice error: $\sim 2 \,\, {
m MeV}$)

 $m_{\rm C}(3{\rm GeV}) = 986(10) {\rm MeV}$

André H. Hoang

Vxb Workshop, SLAC, Oct 29 - 31, 2009

Thank you for a very interesting workshop

Relativistic Sum Rules:

 $m_b \& m_c$

Method with the most advanced theoretical computations:

$$\mathcal{M}_{n}^{\text{th}} \equiv \frac{12\pi^{2}}{n!} \left(\frac{d}{dq^{2}} \right)^{n} \Pi_{c}(q^{2}) \bigg|_{q^{2}=0} = \frac{9}{4} Q_{c}^{2} \left(\frac{1}{4m_{c}^{2}} \right)^{n} \bar{C}_{n}$$

 $\mathcal{O}(\alpha_s^2)$ moments Chetyrkin, Kuhn, Steinhauser (1994-1998) $\mathcal{O}(\alpha_s^3)$ moments n=1Boughezal, Czakon, Schutzmeier (2006)

$$\Pi(q^2)$$
 function at $\mathcal{O}(\alpha_s^3)$

n = 1 - 4 Kuhn, Steinhauser, Sturm (2006)

Mateu, Zebarjad, Hoang (2008) Kivo, Meier, Meierhofer, Marguard (2009)

 \rightarrow Experimental data for R_b , R_c not available in most of the continuum region:

 $\mathcal{M}_n^{\exp} = \int \frac{\mathrm{d}s}{s^{n+1}} R_c(s)$

- take continuum theory for missing data
- \rightarrow Lattice results for moments of scalar and pseudoscalar current correlators: Allison, Lepage, etal, (2008)

André H. Hoang

Vxb Workshop, SLAC, Oct 29 - 31, 2009

Quark Masses and other Parameters

