Heavy Flavor Spectroscopy on the Lattice

David Richards
 Jefferson Laboratory

Lattice QCD Meets Experiment FNAL
 April 26-27, 2010

- Why are we interested?
- Renaissance in lattice spectroscopy
- Charmonium, and the new states....
- Charmed and Bottom baryons
- Future light-quark programs
- Future prospects

Low-lying Hadron Spectrum

$$
\begin{aligned}
C(t)=\sum_{\vec{x}}\langle 0| N(\vec{x}, t) \bar{N}(0)|0\rangle & =\sum_{n, \vec{x}}\langle 0| e^{i p \cdot x} N(0) e^{-i p \cdot x}|n\rangle\langle n| \bar{N}(0)|0\rangle \\
& =|\langle n| N(0)| 0\rangle\left.\right|^{2} e^{-E_{n} t}=\sum_{n} A_{n} e^{-E_{n} t}
\end{aligned}
$$

Durr et al., BMW
Collaboration
Science 2008
Control over:

- Quark-mass dependence
- Continuum extrapolation
- finite-volume effects (pions, resonances)

Benchmark calculation of QCD - enabling us to do something else!

Goals - I

.....but a quantitative understanding of the spectrum is important in its own right...

- Why is it important?
- What are the key degrees of freedom describing the bound states?
- How do they change as we vary the quark mass?
- What is the role of the gluon in the spectrum search for exotics?
- What is the origin of confinement, describing 99\% of observed matter?
- If QCD is correct and we understand it, expt. data must confront ab initio calculations

Goals - II

- Are states Missing, because our pictures do not capture correct degrees of freedom?
- Do they just not couple to probes?

- Exotic Mesons are those whose values of JPC are in accessible to quark model
- Multi-quark states:
- Hybrids with excitations of the fluxtube
- Study of hybrids: revealing gluonic and flux-tube degrees of freedom of QCD.

Variational Method

- Extracting excited-state energies described in C. Michael, NPB 259, 58 (1985) and Luscher and Wolff, NPB 339, 222 (1990)
- Can be viewed as exploiting the variational method
- Given $\mathbf{N} \times \mathrm{N}$ correlator matrix $C_{\alpha \beta}=\langle 0| \mathcal{O}_{\alpha}(t) \mathcal{O}_{\beta}(0)|0\rangle$, one defines the \mathbf{N} principal correlators $\lambda_{i}\left(\mathrm{t}, \mathrm{t}_{0}\right)$ as the eigenvalues of

$$
C^{-1 / 2}\left(t_{0}\right) C(t) C^{-1 / 2}\left(t_{0}\right)
$$

- Principal effective masses defined from correlators plateau to lowest-lying energies
$\lambda_{i}\left(t, t_{0}\right) \rightarrow e^{-E_{i}\left(t-t_{0}\right)}\left(1+O\left(e^{-\Delta E\left(t-t_{0}\right)}\right)\right)$

Eigenvectors, with metric $\mathrm{C}\left(\mathrm{t}_{0}\right)$, are orthonormal and project onto the respective states

Charmonium

Charmonium - II

Charmonium - III

- Can we reliably compute higher states in spectrum?
- Can we reliably specify continuum quantum numbers?

$$
C_{i j}(t)=\sum_{\vec{x}}\left\langle\mathcal{O}_{i}(\vec{x}, t) \mathcal{O}_{j}(\overrightarrow{0}, 0)\right\rangle=\sum_{N} \frac{Z_{i}^{(N)} Z_{j}^{(N) *}}{2 m_{N}} e^{-m_{N} t}
$$

$$
Z_{j}^{(N)} \equiv\langle 0| O_{j}|N\rangle \text { contains information about quantum numbers of state }
$$

Dudek, Edwards, Mathur, DGR, PRD78:094504 (08)

LQCD-based Phenomenology

What can we learn about the nature of the QCD spectrum, and the effective degrees of

Dudek and Rrapaj, PRD78:094504 (2008) freedom of QCD?

$\begin{gathered} \text { operator } \\ \text { name } \end{gathered}$	$\underset{\substack{\text { continuum } \\ \text { limit }}}{ }$	$\underset{J^{P C}}{\substack{\text { allowed }}}$	$\begin{aligned} & \text { kinematic } \\ & \text { factor } \\ & \hline \hline \end{aligned}$	$\begin{gathered} \begin{array}{c} \text { quark model } \\ \text { state } \end{array} \\ \hline \end{gathered}$	$f(q)$	\qquad
$a_{0} \times \nabla$	$\bar{\psi} \partial^{i} \psi$	1^{--}	$M Z \in^{i}$	${ }^{3} S_{1}$	$\frac{2 \sqrt{2}}{3 M} \frac{q^{2}}{m q}$	$R_{S}^{\prime \prime}(0)$
				${ }^{3} D_{1}$	$\frac{4}{3 M} \frac{q^{2}}{m q}$	$R_{D}^{\prime \prime}(0)$
$\begin{gathered} a_{0(2)} \times \nabla \\ \pi \times \nabla \end{gathered}$	$\begin{gathered} \bar{\psi} \gamma^{0} \partial^{i} \psi \\ \bar{\psi} \gamma^{5} \partial^{i} \psi \end{gathered}$	1^{-+}	$M Z \in^{i}$	exotic	0	0
		1^{+-}	$M Z \in^{i}$	${ }^{1} P_{1}$	$\frac{4 \sqrt{2}}{\sqrt{3} M} q\left(1+\frac{q^{2}}{4 m_{q}^{2}}\right)$	$R_{P}^{\prime}(0)$
$\begin{gathered} \pi_{(2)} \times \nabla \\ \rho \times \nabla \end{gathered}$	$\begin{gathered} \bar{\psi} \gamma^{0} \gamma^{5} \partial^{i} \psi \\ \bar{\psi} \gamma^{i} \partial^{j} \psi \end{gathered}$	1^{+-}	$M Z \in^{i}$	${ }^{1} P_{1}$	$\frac{4 \sqrt{2}}{\sqrt{3} M} q\left(1-\frac{q^{2}}{4 m_{q}^{2}}\right)$	$R_{P}^{\prime}(0)$
		0^{++}	$M Z \delta^{i j}$	${ }^{3} P_{0}$	$\frac{4 \sqrt{2}}{3 M} q\left(1-\frac{q^{2}}{4 m_{q}^{2}}\right)$	$R_{P}^{\prime}(0)$
			$Z \epsilon^{i j}$	${ }^{3} P_{1}$	$\frac{4}{\sqrt{3} M} q\left(1+\frac{q^{2}}{4 m_{q}^{2}}\right)$	$R_{P}^{\prime}(0)$
				${ }^{3} P_{2}$	$\frac{4 \sqrt{2}}{\sqrt{3} M} q\left(1+\frac{q^{2}}{20 m_{q}^{2}}\right)$	$R_{P}^{\prime}(0)$
				${ }^{3} F_{2}$	$\frac{4}{5 M} \frac{q^{3}}{m_{q}^{2}}$	$R_{F}^{\prime \prime \prime}(0)$

Phenomenological interpretation Comparison with non-relativistic quark model

operator	$0^{\text {th }}[4305(40)] 1^{\text {st }}[4645(86)]$	$2^{\text {nd }}[4689(138)]$	$3^{\text {rd }}[5580(160)]$	
$a_{0(2)} \times \nabla_{T 1}^{(s m)}\left(10^{-3}\right)$	$2.5(2)$	$2.0(6)$	$2.0(7)$	$0.8(4)$
$b_{1} \times \nabla_{T 1}^{(s m)}\left(10^{-3}\right)$	$2.2(2)$	$2.9(4)$	$1.7(8)$	$1.4(7)$
$\rho \times \mathbb{B}_{T 1}^{(s m)}\left(10^{-}\right.$	$\mathbf{2 . 8 8 (5)}$	$0.2(2)$	$0.8(5)$	$0(0.3)$
$\rho_{2} \times \mathbb{B}_{T 1}^{(s m)}\left(10^{3}\right)$	$\mathbf{2 . 8 4 (5)}$	$0.0(2)$	$0.8(5)$	$0(0.3)$
$a_{0(2)} \times \nabla_{T 1}\left(10^{-3}\right)$	$1.0(1)$	$0.2(3)$	$1.2(5)$	$1.5(7)$
$b_{1} \times \nabla_{T 1}\left(10^{-3}\right)$	$1.7(1)$	$0.2(4)$	$1.0(5)$	$0.8(11)$
$\rho \times \mathbb{B}_{T 1}\left(10^{-3}\right)$	$3.1(2)$	$0.4(7)$	$2.6(9)$	$3.6(20)$
$\rho_{2} \times \mathbb{B}_{T 1}\left(10^{-3}\right)$	$3.0(2)$	$0.2(6)$	$2.5(9)$	$3.5(20)$
assignment	1^{-+}hyb ?	$4^{-+}\left({ }^{1} G_{4}\right) ?$	$?$	$?$

Radiative Transitions - I

Electro-magnetic properties - probe of EM structure

Dudek, Edwards, Richards, PRD73, 074507

Experimental analysis by CLEO-c driven by lattice calculations

Spectrum and Properties of Mesons in LQCD

J Dudek, R Edwards, C Thomas, Phys. Rev. D79:094504 (2009).

Use of variational method, and the optimized meson operators, to compute radiative transitions between excited states and exotics.

considerable phenomenology developed from the results - supports non-relativistic models and limits possibilities for form of excited glue

Radiative width of hybrid comparable to conventional meson

X, Y, Z...

- Zoo of new States $X(3872), Y(4260), Y(4140)$
- $\mathrm{X}(3872)$ seen in many experiments both B and proton-antiproton - preferred quantum numbers $J^{P C}=1^{++}$.
- X is the candidate molecular or tetraquark state
- Can it be seen in lattice QCD?
- Quantum numbers alone cannot eliminate simple charmonium state
- Need to search for $\bar{c} \bar{q} c q$
- Such states have same quantum numbers as both charmonium, and indeed DD* in S-wave; we should see these states in the lattice spectrum

Chiu et al.

X,Y,Z,... II

"molecular"

Diquark-antidiquark

- Quenched calculation...
- See molecular/tetraquark consistent with X(3872)
- But should also see the $D+D^{*}$ in an S-Wave

Charmed and Bottom Baryons

- SELEX, D0, CDF,... charmed and bottom baryons
- Recent calculation in full QCD: Asqtad for sea quarks, DWF for light quarks, FNAL Action for heavy quarks.
Use charmonium system to fix action
L. Liu et al, arXiv:0909.3294

Meinel et al., arXiv:0909.3837

DWF for light quarks

Doubly-charmed Baryons

Prediction: $M_{\Omega_{c c}}=3763 \pm 19 \pm 26(+13-79) \mathrm{MeV}$

$$
M_{\Omega_{b b b}}=14.3748(33) \mathrm{GeV}
$$

Insensitive to light dof?

Discovery: cascade physics

Cascades (uss) are largely terra incognita

Light-Quark Physics

Goals- III

CLAS

GlueX

meson resonance

meson spectrum
transition form-factors $N \xrightarrow{\gamma^{\star}} N^{\star}$
photocouplings $g\left(m \xrightarrow{\gamma} m^{\star}\right)$

Tuesday, April 27, 2010

Isovector Meson Spectrum - I

Exotic

Isovector Meson Spectrum - II

Where are the multi-hadrons?

CP-PACS, arXiv:0708.3705
Calculation is incomplete.

Meson spectrum on two volumes: dashed lines denote expected (noninteracting) multi-particle energies.

- Interacting particles: energies shifted by an amount that dependings on E .
- Luscher: relates shift in the freeparticle energy levels to phase shift at E.

Excited Baryon Spectrum

Subduction of continuum operators - reliable determination of baryon spins

Nucleons
$\mathrm{Nf}=2+1,808,16^{\wedge} 3 \times 128,7 \mathrm{t0}, 250 \mathrm{cfgs}$ pos parity, 463 neg parity

Nucleon Mass Spectrum (Exp): 4*, 3*, 2*

Thresholds \& decays: need multi-particle ops
R. Edwards, Hadron 2009

Phenomenology: Nucleon Spectrum

Summary

- Spectroscopy of Heavy Flavors affords an excellent theatre in which to study QCD, and in particular in a region where a nonrelativistic picture may provide a faithful description.
- Lattice calculations can be used to construct a new "phenomenology" of QCD.
- Major challenge for lattice QCD:
- Complete the calculation: where are the multi-hadrons?
- Determine the phase shifts - model dependent extraction of resonance parameters

IF OUR UNDERSTANDING OF QCD IS CORRECT, PRECISE LATTICE CALCULATIONS SHOULD CONFRONT EXPERIMENT

