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• Why are we interested?
• Renaissance in lattice spectroscopy 

- Charmonium, and the new states....
- Charmed and Bottom baryons
- Future light-quark programs

• Future prospects

Tuesday, April 27, 2010



Low-lying Hadron Spectrum

Control over:
• Quark-mass dependence
• Continuum extrapolation
• finite-volume effects 
(pions, resonances)

Durr et al., BMW 
Collaboration

Science 2008

Benchmark calculation of QCD - enabling us to do something else!
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Goals - I

• Why is it important?
– What are the key degrees of freedom describing the 

bound states?
• How do they change as we vary the quark mass?

– What is the role of the gluon in the spectrum – 
search for exotics?

– What is the origin of confinement, describing 99% of 
observed matter?

– If QCD is correct and we understand it, expt. data 
must confront ab initio calculations

.....but a quantitative understanding of the spectrum is 
important in its own right...
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Goals - II

• Are states Missing, because 
our pictures do not capture 
correct degrees of freedom?
• Do they just not couple to 
probes?

• Exotic Mesons are those whose values 
of JPC are in accessible to quark model
– Multi-quark states:
– Hybrids with excitations of the flux-

tube
• Study of hybrids: revealing gluonic  and 

flux-tube degrees of freedom of QCD.

|q3>

|q2q>
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Variational Method
• Extracting excited-state energies described in C. Michael, NPB 

259, 58 (1985) and Luscher and Wolff, NPB 339, 222 (1990)
• Can be viewed as exploiting the variational method
• Given  N x N correlator matrix                                                  , one 

defines the N principal  correlators λi(t,t0) as the eigenvalues of

• Principal effective masses defined from correlators plateau to 
lowest-lying energies 

Eigenvectors, with metric C(t0), are orthonormal and project onto the 
respective states

Cαβ = �0 | Oα(t)Oβ(0) | 0�
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Plethora of states - below the DD̄ threshold

Charmonium

Precision LQCD - testing both QCD and 
our computational framework.

Challenges:
- Discretisation uncertainties
- Precise inclusion of effects of light-quark 
degrees of freedom.

Approaches:
- NRQCD
- Redefinition of action (FNAL)
- HISQ
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Charmonium - II

Charm physics
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The gold-plated meson spectrum from lattice QCD - HPQCD 2008
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Figure 7: The current status of the gold-plated meson spectrum. We indicate separately those states which
are used to tune parameters (4 quark masses and the lattice spacing). We also show which states (the "b and
the Bc) were predicted on the lattice ahead of experiment [5, 24].
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Z
(N)
j ≡ �0 | Oj | N� contains information about quantum numbers of state

Charmonium - III
Dudek, Edwards, Mathur, 
DGR, PRD78:094504 
(08)

• Can we reliably compute higher states in spectrum?
• Can we reliably specify continuum quantum numbers?

2

momentum,

Cij(t) =
∑

!x

〈Oi(!x, t)Oj(!0, 0)〉 =
∑

N

Z(N)
i Z(N)∗

j

2mN
e−mN t,

where the sum over states labelled by N extends over all
meson states with the quantum numbers of the interpo-
lating fields Oi,j . Details of the method used to extract
m, Z can be found in [11].

In this paper we compute these overlap factors us-
ing a non-relativistic reduction of the continuum limit
of the interpolating fields and cc̄ states constructed as in
a quark potential model. Comparison with the numeri-
cal values extracted from the lattice calculation tests the
potential model formalism and gives a model-dependent
interpretation of the lattice spectrum that agrees reason-

ably well with the conventional quark-model picture, but
goes beyond it by suggesting the influence of gluonic de-
grees of freedom.

II. NON-RELATIVISTIC POTENTIAL MODEL
STATES

In the non-relativistic potential model we construct
states of definite quark and anti-quark number and as-
sume that the only effect of the gluonic field is in provid-
ing a static potential which binds the quarks into mesons.
A generic unflavoured qq̄ meson state can be constructed
which is an eigenstate of orbital angular momentum L
and total quark spin S,

|n2S+1LJ , mJ ; !p〉 =
√

2E!p

∑

mL,mS

〈LmL; SmS |JmJ〉
∑

r,s

〈1
2r; 1

2s|SmS〉
∫

d3!q

(2π)3
ϕnL(|!q|)Y mL

L (q̂) a†
r(

1
2!p + !q)b†s(

1
2!p − !q)|0〉,

(1)
where a†

r(!p)/b†r(!p) is the creation operator for a quark/antiquark of momentum !p and z-component of spin r. The
momentum-space wavefunction ϕnL(|!q|), which carries the orbital angular momentum quantum number L and a
principal quantum number n, is normally determined by solving a Schrödinger equation with a potential of phe-
nomenological origin . Within such models, states of different L can be mixed by non-central interactions such as a
tensor force which are usually considered to be relativistic corrections to the dominant central potential, suppressed
by powers of |!q|/mq.

Although this state is constructed to have non-zero total momentum, it does not transform in a Lorentz-covariant
manner under boosts, the model having only Galilean invariance - we will see later that this reduces the usefulness
of the model away from states at rest. For the bulk of this paper we will consider only meson states at rest and will
leave the momentum-space wavefunctions unspecified.

III. NON-RELATIVISTIC REDUCTION OF
INTERPOLATING FIELDS

A set of operators was presented and used in [11], based
upon an extension of the set proposed in [12]. These
operators used a simple discretisation,

−→
∇jf(x) = 1

2a

(

Uj(x)f(x + ĵa) − U †
j (x − ĵa)f(x − ĵa)

)

→
−→
D jf(x) + O(a2)

of the covariant derivative and were constructed to trans-
form irreducibly under the group of rotations allowed on
a cubic lattice. At zero momentum there are five ir-
reducible representations, A1, T1, T2, E, A2 in which the
various continuum spins are distributed [13]. The opera-
tors used were constructed such that although they trans-
form irreducibly under lattice rotations, they also have a
continuum limit in which they overlap with only a single

state2 of definite JPC . These operators then are expected
to have an “unsuppressed” overlap with one particular
JPC along with overlaps with “lattice artifact” states,
suppressed by powers of the lattice spacing a. For exam-

ple, the operator ψ̄
←→
∇ iψ has a continuum limit ψ̄

←→
D iψ

which overlaps with only 1−− at zero momentum. At
finite lattice spacing this operator transforms as T1 and
hence can have overlaps with 3−−, 4−− . . . suppressed by
at least one power of a.

We intend to compute overlaps of the type

Z = 〈0|ψ̄(0)Γ
←→
D i

←→
D j . . . ψ(0)|n2S+1LJ , mJ ;!0〉,

in the limit that the internal momentum of the quarks in
the meson is much smaller than the quark mass. We will
use the free-field expansion of the quark field operators,

2 in a few cases there are two continuum overlaps, see the appendix
of[11]
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quark potential model masses. Tabulated masses in MeV.

zero three-momentum, on to a 2++ state as follows:

〈0|ψγiDjψ|2++(#0, r)〉 = Z ∈ij (#0, r). (26)

Now, while we might think of the T2 and E irreps as being independent on a discrete lattice, their particle content is
clearly related in the continuum limit, e.g. they share a common Z-value:

〈0|(ρ ×∇)i
T2
|2++(#0, r)〉 = |εijk|〈0|ψγjDkψ|2++(#0, r)〉 = Z|εijk| ∈jk (#0, r) (27)

〈0|(ρ ×∇)i
E |2++(#0, r)〉 = Qijk〈0|ψγjDkψ|2++(#0, r)〉 = ZQijk ∈jk (#0, r). (28)

We might reasonably expect that if our simulation can be considered to be “close” to the continuum limit, the Z-values
extracted from the T2 and E channels would be related as above, up to hopefully small corrections in powers of a.
This is in fact what we find to a high accuracy. As a result of the correlator direction averaging described above, the
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zero three-momentum, on to a 2++ state as follows:

〈0|ψγiDjψ|2++(#0, r)〉 = Z ∈ij (#0, r). (26)

Now, while we might think of the T2 and E irreps as being independent on a discrete lattice, their particle content is
clearly related in the continuum limit, e.g. they share a common Z-value:

〈0|(ρ ×∇)i
T2
|2++(#0, r)〉 = |εijk|〈0|ψγjDkψ|2++(#0, r)〉 = Z|εijk| ∈jk (#0, r) (27)

〈0|(ρ ×∇)i
E |2++(#0, r)〉 = Qijk〈0|ψγjDkψ|2++(#0, r)〉 = ZQijk ∈jk (#0, r). (28)

We might reasonably expect that if our simulation can be considered to be “close” to the continuum limit, the Z-values
extracted from the T2 and E channels would be related as above, up to hopefully small corrections in powers of a.
This is in fact what we find to a high accuracy. As a result of the correlator direction averaging described above, the
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LQCD-based Phenomenology
What can we learn about the nature of the 
QCD spectrum, and the effective degrees of 
freedom of QCD?

5

operator
name

continuum
limit

allowed
JPC

kinematic
factor

quark model
state f(q) origin

behaviour

1 ψ̄ψ 0++ Z 3P0

√
2 q

m R′
P (0)

γ0 ψ̄γ0ψ 0+− Z exotic 0 0

γ5 ψ̄γ5ψ 0−+ Z 1S0 2
√

2
“

1 + q2

4m2
q

”

RS(0)

γ0γ5 ψ̄γ0γ5ψ 0−+ Z 1S0 2
√

2
“

1 − q2

4m2
q

”

RS(0)

γi ψ̄γiψ 1−− Z ∈i 3S1 2
√

2
“

1 + q2

12m2
q

”

RS(0)

3D1
2
3

q2

m2
q

R′′
D(0)

γ0γi ψ̄γ0γiψ 1−− Z ∈i 3S1 2
√

2
“

1 − q2

12m2
q

”

RS(0)

3D1
2
3

q2

m2
q

R′′
D(0)

γiγ5 ψ̄γiγ5ψ 1++ Z ∈i 3P1
2√
3

q
mq

R′
P (0)

γiγj εijkψ̄γjγkψ 1+− Z ∈i 1P1
2
√

2√
3

q
mq

R′
P (0)

TABLE I: Local operators. Indicated are the JPC allowed at rest by Lorentz symmetry. The quark-model overlaps are given

by Z =
√

2M
√

π
R

q2dq
(2π)3

ϕ(q)f(q) for unsmeared operators and Z(σ) =
√

2M
√

π
R

q2dq
(2π)3

e−σ2q2/2ϕ(q)f(q) for smeared operators.

The final column indicates the leading behaviour in terms of derivatives of the spatial wavefunction at the origin.

operator
name

continuum
limit

allowed
JPC

kinematic
factor

quark model
state f(q) origin

behaviour

a0 ×∇ ψ̄∂iψ 1−− MZ ∈i 3S1
2
√

2
3M

q2

mq
R′′

S(0)
3D1

4
3M

q2

mq
R′′

D(0)

a0(2) ×∇ ψ̄γ0∂iψ 1−+ MZ ∈i exotic 0 0

π ×∇ ψ̄γ5∂iψ 1+− MZ ∈i 1P1
4
√

2√
3M

q
“

1 + q2

4m2
q

”

R′
P (0)

π(2) ×∇ ψ̄γ0γ5∂iψ 1+− MZ ∈i 1P1
4
√

2√
3M

q
“

1 − q2

4m2
q

”

R′
P (0)

ρ ×∇ ψ̄γi∂jψ 0++ MZδij 3P0
4
√

2
3M q

“

1 − q2

4m2
q

”

R′
P (0)

1++ MZεijk ∈k 3P1
4√
3M

q
“

1 + q2

4m2
q

”

R′
P (0)

2++ MZ ∈ij 3P2
4
√

2√
3M

q
“

1 + q2

20m2
q

”

R′
P (0)

3F2
4

5M
q3

m2
q

R′′′
F (0)

ρ(2) ×∇ ψ̄γ0γi∂jψ 0++ MZδij 3P0
4
√

2
3M q

“

1 + q2

4m2
q

”

R′
P (0)

1++ MZεijk ∈k 3P1
4√
3M

q
“

1 − q2

4m2
q

”

R′
P (0)

2++ MZ ∈ij 3P2
4
√

2√
3M

q
“

1 − q2

20m2
q

”

R′
P (0)

3F2
4

5M
q3

m2
q

R′′′
F (0)

a1 ×∇ ψ̄γ5γi∂jψ 0−− MZδij exotic 0 0

1−− MZεijk ∈k 3S1
2
√

2
3M

q2

mq
R′′

S(0)
3D1

2
3M

q2

mq
R′′

D(0)

2−− MZ ∈ij 3D2
2
√

2√
5M

q2

mq
R′′

D(0)

b1 ×∇ εiklψ̄γkγl∂jψ 0−+ MZδij 1S0
4
√

2
3M

q2

mq
R′′

S(0)

1−+ MZεijk ∈k exotic 0 0

2−+ MZ ∈ij 1D2
8√

15M
q2

mq
R′′

D(0)

TABLE II: As Table I for single derivative operators.

states so far considered. The B-type operators have the
characteristic feature that they are zero under the condi-
tions of the quark model, corresponding as they do to the
commutator of two covariant derivatives which vanishes if
the gluonic field is neglected. With gluonic field included,
the B operator is proportional to the field strength tensor
which in a constituent gluon model would have at least

one gluon creation/annihilation operator. Within an ex-
tended quark model we would propose that considerable
overlap onto B-type operators indicates some hybrid glu-
onic nature to the state. In the flux-tube model, there
is a degenerate set of exotics that includes a 1−− state
at around 4.2 GeV - within this model the hybrid 1−− is
a quark spin-singlet, which matches with the large over-

Dudek and Rrapaj, PRD78:094504 (2008)

Phenomenological interpretation
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FIG. 2: 1−− spectrum. Black lines are experimental states
at various levels of confirmation, blue bars are lattice states
with quark model assignments as described in the text. Also
shown are quark model predictions and the hybrid prediction
of the Coulomb gauge model.

is located at a mass near 4.4 GeV, and since the b1 × B

operator has a quark spin-singlet component it seems rea-
sonable to anticipate overlap with this state.

Finally we will consider applying our methods to chan-
nels that in continuum house JPC exotic states not
present in the simple c̄c quark model. The most straight-
forward choice is A+−

1 which only houses even spins and
hence is always exotic with this PC. The simplest op-
erator transforming in this way is ψ̄γ0ψ - we find that
unsmeared correlators containing this operator are con-
sistent with zero, which matches with the fact that this
operator contains no gluonic field to generate a hybrid
state. By smearing this operator using a function of the
gauge-covariant laplacian we introduce the gluonic field
and have the possibility of overlap with a hybrid state.
Using this operator and smeared and unsmeared a1 × B

operators we extract a state at 4465(65) MeV which has
clear overlaps on to all three operators. The first excited
state is much higher in mass, at 5570(270) MeV.

A less trivial channel is T−+
1 which houses exotic

1−+, 3−+ but also non-exotic 4−+ which is realised in the
quark model as 1G4. In [11] it proved to be not possible to
decisively state whether the ground state in this channel
was indeed the exotic 1−+ state or a 4−+ nonexotic, here
we will consider this again using our model-dependent
overlap comparison. In Table VI we present the extracted
overlaps using an eight dimensional basis of operators.
For the ground state we see rather large overlaps with
the quark-model forbidden operators ρ × B, ρ2 × B sug-
gesting that it may well be the exotic hybrid 1−+ state.
The first excited state has overlaps consistent with zero

for all operators except the smeared b1 ×∇ and possibly
the a0(2) × ∇. This may well be a signal for a lattice
artifact 4−+ state, whose spin-singlet (1G4) nature could
appear through overlap with b1×∇ which has a dominant
spin-singlet piece in its non-relativistic reduction.

2+− exotics appear in (T2, E)+−. The T2 receives
contributions also from non-exotic 3+− and indeed the
ground state in that channel is identified as such. The
first excited state in T +−

2 matches with the ground state
in E+− and in both cases large overlaps with the a1 ×B

operator are seen strongly suggesting that this is the 2+−

exotic at a mass of 4620(60).

V. FINITE MOMENTUM

The non-relativistic quark-model states as constructed
do not transform covariantly under boosts, but do trans-
form properly under rotations in three-dimensions. This
can lead to overlap on to more states than are allowed
by Lorentz symmetry. For example, consider the opera-
tor ψ̄γµ∂νψ - insisting upon Poincaré invariance one has
only the following overlaps

〈0|ψ̄γµ∂νψ|0++(%p, r)〉 = Zgµν + Z ′pµpν

〈0|ψ̄γµ∂νψ|1++(%p, r)〉 = Zεµνρσpρ ∈σ(%p, r)

〈0|ψ̄γµ∂νψ|2++(%p, r)〉 = Z ∈µν(%p, r),

so that if, as we do in the lattice calculation, one considers
only the spatial derivatives, one has overlaps

〈0|ψ̄γi∂jψ|0++(%p, r)〉 = Zδij + Z ′pipj

〈0|ψ̄γi∂jψ|1++(%p, r)〉 = Zεijk
(

pk ∈0(%p, r) − E ∈k(%p, r)
)

〈0|ψ̄γi∂jψ|2++(%p, r)〉 = Z ∈ij(%p, r).

But note that this is not the most general set allowed by
three-dimensional rotations, parity and charge conjuga-
tion, giving up on boost invariance we also are allowed
overlaps

〈0|ψ̄γi∂jψ|0−+(%p, r)〉 = Zεijkpk

〈0|ψ̄γi∂jψ|2−+(%p, r)〉 = Zεikl ∈jk(%p, r)pl.

Within the quark model state construction, we can ex-
plicitly compute these overlaps at finite momentum find-
ing

Z(3P0) =
√

2E$p
√

π

∫

q2dq
(2π)3

1√
2

q
3m2

q
ϕ(q)

Z ′(3P0) =
√

2E$p
√

π

∫

q2dq
(2π)3

8
3q

(

1 − q2

4m2
q
− p2

16m2
q

)

ϕ(q)

Z(3P1) =
√

2E$p
√

π M
E2

!p

∫

q2dq
(2π)3

4√
3
q
(

1 + q2

4m2
q

+ p2

16m2
q

)

ϕ(q)

Z(3P2) =
√

2E$p
√

π

∫

q2dq
(2π)3

8√
6
q
(

1 + q2
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FIG. 3: PC = ++ spectrum by lattice irrep and by continuum assignment.

operator 0th[4305(40)] 1st[4645(86)] 2nd[4689(138)] 3rd[5580(160)]

a0(2) ×∇(sm)
T1 (10−3) 2.5(2) 2.0(6) 2.0(7) 0.8(4)

b1 ×∇(sm)
T1 (10−3) 2.2(2) 2.9(4) 1.7(8) 1.4(7)

ρ × B
(sm)
T1 (10−3) 2.88(5) 0.2(2) 0.8(5) 0(0.3)

ρ2 × B
(sm)
T1 (10−3) 2.84(5) 0.0(2) 0.8(5) 0(0.3)

a0(2) ×∇T1 (10−3) 1.8(1) 0.2(3) 1.2(5) 1.5(7)

b1 ×∇T1 (10−3) 1.7(1) 0.2(4) 1.0(5) 0.8(11)

ρ × BT1 (10−3) 3.1(2) 0.4(7) 2.6(9) 3.6(20)

ρ2 × BT1 (10−3) 3.0(2) 0.2(6) 2.5(9) 3.5(20)

assignment 1−+ hyb ? 4−+(1G4) ? ? ?

TABLE VI: As IV but for the T−+
1 channel..

so that, as anticipated, as well as the overlaps allowed
by Lorentz symmetry there are also disallowed over-
laps. This is an inherent weakness of the non-relativistic
model that can only be remedied by constructing a fully
Poincaré covariant bound-state scheme which poses a sig-
nificant challenge to modellers.

VI. SUMMARY

We have presented a simple framework for compari-
son of lattice QCD spectroscopy and the quark model.
It relies upon a non-relativistic reduction and as such is
suitable in the heavy-quark sector. We have compared
with recent lattice QCD data and presented a model-
dependent description of the data which agrees in struc-
ture with the predictions of the Cornell potential quark
model, but goes beyond that model in providing predic-
tions for exotics and crypto-exotic hybrid mesons. The
particular lattice data used is dominated by sources of
systematic error, notably we suspect that the small vol-
ume used is “squeezing” the wavefunctions of higher ex-
cited states. An alternative use of this method, when
applied to more realistic lattice QCD data, would be to
allow a quark model to be “tuned” to QCD, through se-
lection of interactions and parameters.

Of particular interest is the extension beyond quark-
model states, where the gluonic field plays a manifest
role. If the assignments of hybrid nature made in this
analysis are correct we have the following (incomplete)
hybrid spectrum:

• a non-exotic pseudoscalar state (0−+) at 4280(60)
MeV which may have a degree of mixing with a
nearby conventional c̄c state;

• an exotic 1−+ state at 4305(50) MeV;

• a non-exotic vector state (1−−) around 4400(60)
MeV where mixing with conventional states is not
apparent;

• an exotic 0+− state at 4465(65) MeV;

• an exotic 2+− state at 4620(60) MeV;

• no non-exotic hybrids in (0, 1, 2)++ channels below
about 4.5 GeV

An interesting extension to the work done in this paper
might be to apply a similar technique using a model with
explicit gluonic degrees-of-freedom such as the flux-tube
model or the Coulomb-gauge model.

It is not clear if this method will have utility for lighter
quarks, where the quasiparticle quark-like degrees-of-
freedom in the quark model (“constituent quarks”) are
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cc̄ −→ γγ: Dudek, Edwards, PRL97, 172001 (2006).

10

Dudek, Edwards, Richards, 
PRD73, 074507

Electro-magnetic properties  - probe of EM 
structure

Radiative Transitions - I 

hep-ex/0805.252

Experimental analysis by CLEO-c driven by lattice calculations

R M

γ pp’=p+q
q
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Spectrum and Properties of Mesons in LQCD 

Use of variational method, and the optimized 
meson operators, to compute radiative 
transitions between excited states and exotics.

J Dudek, R Edwards, C Thomas, Phys. 
Rev. D79:094504 (2009).

Radiative width of hybrid comparable 
to conventional meson

11
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• Zoo of new States X(3872), Y(4260), Y(4140)
• X(3872) seen in many experiments both B and proton-antiproton - preferred 

quantum numbers JPC=1++.

• X is the candidate molecular or tetraquark state 
• Can it be seen in lattice QCD?

– Quantum numbers alone cannot eliminate simple charmonium state
– Need to search for 
– Such states have same quantum numbers as both charmonium, and indeed 

DD* in S-wave; we should see these states in the lattice spectrum

X, Y, Z...

12

c̄q̄cq

Mixing of S-wave charmonia with DD molecule states C. Ehmann

One important thing to note here is the dependence of the mixing on the light quark mass. With
decreasing mq, the denominator obviously becomes smaller, but the mixing matrix element in the
numerator is expected to increase, since the probability for creating a light quark-antiquark pair
should be inversely dependent on the light quark mass. Therefore we expect mixing effects to
increase at smaller light quark masses.

2

2 2

2

_

+ 4 _ 4

Figure 1: The mixing matrix. Solid lines represent charm quarks, wiggled lines light quarks.

2. Simulation

We aim to calculate the coefficients in the expansion of the QCD eigenstates into the trial
interpolating fields nonperturbatively, by diagonalizing a matrix of cross correlators including both
cc̄ and molecular operators. For each type of operator we apply three different types of smearing:
local, narrow and wide, where these terms indicate the number of Wuppertal smearing steps with
! = 0.3, employing spatial APE smeared (nAPE = 15, " = 0.3) parallel transporters to smooth the
trial wavefunctions. The number of fermion field smearing iterations is determined by optimizing
the effective masses separately for each of the two sectors.

In figure 1 we sketch the structure of the mixing matrix. The different smearing levels are
omitted for the sake of clarity. Solid lines represent charm quark propagators and wiggly lines light
quark propagators. The prefactors are due to the two mass degenerate light sea quark flavors. The
upper left corner contains the cc̄, the lower right corner the molecular sector. Nonvanishing off-
diagonal elements indicate mixing. The spatial separation within the molecular operators was tuned
by maximizing the magnitude of the off-diagonal element. The optimal value was r= 4a≈ 0.3fm.

The charm-anticharm annihilation diagrams were omitted in the present study where we focus
on cc̄-molecule mixing near threshold. We studied these previously in the context of #c-# ′ mixing
where their effect turned out to be negligible [4].

For the evaluation of the last two diagrams of the molecular sector, light all-to-all propagators
are necessary. O(∼ 100) complex Z2 stochastic estimates per configuration were calculated for
this purpose, with the application of sophisticated noise reduction methods like staggered-spin-
color dilution and hopping parameter acceleration as already used in previous studies [6, 4, 7].
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Heavy
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Chiu et al.
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X,Y,Z,... II
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Figure 2: The mass of the lowest-lying state of M1 versus the quark mass mqa,
on the 243 × 48 lattice at β = 6.1. The solid line is the linear fit.

operator M1 is plotted versus mqa. In the limit mq → mu # 0.00265a−1

(corresponding to mπ = 135 MeV), it gives m = 3895(27) MeV, which is in
good agreement with the mass of X(3872).

For mq = ms = 0.08a−1, the time-correlation function and effective mass
of M1 are plotted in Fig. 3a and Fig. 3b respectively. With single exponential
fit, it gives m[(s̄γic)(c̄γ5s) − (c̄γis)(s̄γ5c)] = 4109(21) MeV.

Next we turn to the molecular operators M2, M3, and M4. In each of
these cases, the ratio of spectral weights (R = W20/W24) behaves as R # 1.0
for mqa > 0.05, but deviates from 1.0 with large errors as mq → mu. This
seems to suggest that M2, M3 and M4 have little overlap with the resonance
detected by M1 as mq → mu. We suspect that this is due to quenching
artifacts as mq → mu, mostly coming from the scalar meson (q̄q), or (c̄q), or
(q̄c), as well as the pseudovector (q̄γ5γiq). However, all molecular operators
give compatible masses as mq → mu. This is also the case for the resonance
at mq = ms.

4
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T)#(qC"i

TcT)(qTC"5c)

TWQCD/l24t48/g100/DD4V5A

# # ##

Figure 5: The mass of the lowest-lying state of the diquark-antidiquark oper-
ator X4 versus the quark mass mqa, on the 243 × 48 lattice at β = 6.1. The
solid line is the linear fit.

QCD with exact chiral symmetry. Our results for M1 and X4 are summarized
in Table 1, where in each case, the first error is statistical, and the second one is
our estimate of combined systematic uncertainty including those coming from:
(i) possible plateaus (fit ranges) with χ2/d.o.f. < 1; (ii) the uncertainties in the
strange quark mass and the charm quark mass; (iii) chiral extrapolation (for
the entries containing u/d quarks); and (iv) finite size effects (by comparing
results of two lattice sizes). Note that we cannot estimate the discretization
error since we have been working with one lattice spacing. Even though lat-
tice QCD with exact chiral symmetry does not have O(a) and O(ma) lattice
artifacts, the O(m2a2) effect might turn out to be not negligible for mca = 0.8.

Evidently, both the molecular operator M1 and the diquark-antidiquark
operator X4 detect a 1++ resonance around 3890± 30 MeV in the limit mq →
mu, which is naturally identified with X(3872). This suggests that X(3872) is
indeed in the spectrum of QCD, with quark content (cuc̄ū), and JPC = 1++.

Now, in the quenched approximation, our results suggest that X(3872) has
good overlap with the molecular operator M1 as well as the diquark-antidiquark
operator X4. This is in contrast to the case of Y (4260) in our recent study [17],

7

“molecular” Diquark-antidiquark

• Quenched calculation...
•See molecular/tetraquark consistent with X(3872)
• But should also see the D + D* in an S-Wave
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Charmed and Bottom Baryons
• SELEX, D0, CDF,... charmed and bottom baryons
• Recent calculation in full QCD: Asqtad for sea quarks, DWF for 

light quarks, FNAL Action for heavy quarks.

L. Liu et al, arXiv:0909.3294

Use charmonium system to 
fix action

Experiment

Bottom hadrons from lattice QCD with domain wall and NRQCD fermions Stefan Meinel
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Figure 5: B meson masses at aml = 0.005, ams =
0.04. Errors are statistical/fitting only.
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Figure 6: Singly bottom baryon masses at aml =
0.005, ams = 0.04. Errors are statistical/fitting only.
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Figure 7: Doubly bottom baryon masses at aml =
0.005, ams = 0.04. Errors are statistical/fitting only.
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Figure 8: !bbb matrix correlator, effective energy
plot (lattice units).

The !bbb baryon does not contain light valence quarks, and similarly to bottomonium, the
dependence on the light sea quarks masses is expected to be weak once these are light enough.
Thus, Eq. (3.1) is the better method for computing its absolute mass, and no chiral extrapolation is
required. Also, since NRQCD is computationally cheap, one can go to very high statistics with little
cost. An effective-energy plot for an !bbb matrix correlator from about 105 NRQCD propagators
on the aml = 0.005, ams = 0.04 ensemble is shown in Fig. 8. As can be seen, the signal is very
good. The (unphysical) energy obtained from the fit is aE!bbb = 0.5527(12). Fitting an " correlator
from the same propagators gives aE"(1S) = 0.29786(20). Using the bootstrap method to properly
take into account correlations, Eq. (3.1) then leads to

M!bbb = 14.3748(33) GeV (3.3)

where the error is statistical only and includes the uncertainty in the lattice spacing (the latter was
taken from Table 2). The !bbb mass has been estimated using various continuum methods, see
[15, 16, 17, 18, 19], and the production of the !bbb at hadron colliders has been studied in [20, 21].

6

Meinel et al., arXiv:0909.3837

DWF for light quarks
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MΩbbb = 14.3748(33) GeV

Doubly-charmed Baryons

Prediction:

Bottom hadrons from lattice QCD with domain wall and NRQCD fermions Stefan Meinel
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Figure 8: !bbb matrix correlator, effective energy
plot (lattice units).

The !bbb baryon does not contain light valence quarks, and similarly to bottomonium, the
dependence on the light sea quarks masses is expected to be weak once these are light enough.
Thus, Eq. (3.1) is the better method for computing its absolute mass, and no chiral extrapolation is
required. Also, since NRQCD is computationally cheap, one can go to very high statistics with little
cost. An effective-energy plot for an !bbb matrix correlator from about 105 NRQCD propagators
on the aml = 0.005, ams = 0.04 ensemble is shown in Fig. 8. As can be seen, the signal is very
good. The (unphysical) energy obtained from the fit is aE!bbb = 0.5527(12). Fitting an " correlator
from the same propagators gives aE"(1S) = 0.29786(20). Using the bootstrap method to properly
take into account correlations, Eq. (3.1) then leads to

M!bbb = 14.3748(33) GeV (3.3)

where the error is statistical only and includes the uncertainty in the lattice spacing (the latter was
taken from Table 2). The !bbb mass has been estimated using various continuum methods, see
[15, 16, 17, 18, 19], and the production of the !bbb at hadron colliders has been studied in [20, 21].

6

Insensitive to light dof?
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Discovery: cascade physics
Cascades (uss) are largely terra incognita

Thanks to N. Mathur
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Light-Quark Physics
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Goals- III
CLAS

baryon resonance 

baryon spectrum

transition form-factors

GlueX

meson resonance 

meson spectrum

photocouplings
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Isovector Meson Spectrum - I
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103:262001,2009

Exotic

Isovector spectrum 
with quantum 
numbers reliably 
identified
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1−+

Isovector Meson Spectrum - II
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States with Exotic Quantum Numbers
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look at the ‘overlaps’

hybrid?

x x x x

ground state 
is dominantly

x x x x

1st excited state 
is dominantly

with some

x x x x

2nd excited state 
is dominantly

with some

x x x x

3rd excited state 
is dominantly

hybrid?

with some

build a bound state model 
phenomenology
comparable to the quark model
using non-perturbative QCD 
calculations
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Where are the multi-hadrons?
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Meson spectrum on two volumes: 
dashed lines denote expected (non-
interacting) multi-particle energies.

Calculation is incomplete.

• Interacting particles: energies 
shifted by an amount that 
dependings on E.

• Luscher: relates shift in the free-
particle energy levels to phase 
shift at E.

CP-PACS, arXiv:0708.3705
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Excited Baryon Spectrum

Where is the “Roper”?
Thresholds & decays: need multi-particle ops

Subduction of continuum operators - reliable determination of baryon spins

mπ � 560MeV

R. Edwards, Hadron 2009
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Phenomenology: Nucleon Spectrum
Looks like 
quark model?

Compare overlaps & QM mixings

[70,1-]
P-wave

[56,2+]
D-wave

[70,2+]
D-wave

[20,1+]
P-wave
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Summary
• Spectroscopy of Heavy Flavors affords an excellent theatre in 

which to study QCD, and in particular in a region where a non-
relativistic picture may provide a faithful description.

• Lattice calculations can be used to construct a new 
“phenomenology” of QCD.

• Major challenge for lattice QCD:  
– Complete the calculation: where are the multi-hadrons?
– Determine the phase shifts - model dependent extraction of 

resonance parameters

IF OUR UNDERSTANDING OF QCD IS CORRECT, 
PRECISE LATTICE CALCULATIONS SHOULD CONFRONT 

EXPERIMENT
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