Lattice QCD Computing Project, and Fermilab Status

> Don Holmgren All-Hands Meeting Fermilab April 6-7, 2006

Outline

- Lattice QCD Computing Project
 - Scope
 - Goals and Milestones
 - Personnel/Budgets
- Fermilab Status
 - Hardware
 - Statistics
 - I/O
 - Computer Security
 - User Support

Lattice QCD Project - Scope

- Four years: Oct 1, 2005 → Sept 30, 2009
- Operation (administration, hardware maintenance, site management) of:
 - US QCDOC
 - SciDAC Clusters
 - FNAL: QCD, Pion clusters
 - JLab: 2M, 3G, 4G clusters
 - New Systems
 - FNAL Kaon
 - JLab 6N

Lattice QCD Project - Scope

- Purchase and deploy new systems
 - 2006: JLab 6N, FNAL Kaon
 - 2007 and beyond: at most one new system a year
- Not in scope:
 - Software development
 - Scientific software support

Lattice QCD Project - Mechanics

Funded via OMB Exhibit 300 process:

- Science case how does proposed project fit agency strategic goals and President's Management Agenda?
- Business case compare this investment to alternatives, determine best ROI, NPV
- Baseline budget and schedule
- Performance against baseline budget and schedule
- Project Management
- Acquisition Strategy
- Risk Management
- Performance Goals
- Computer Security

The OMB Exhibit 300 calendar:

- Submitting to DOE now for FY08, which starts Oct 1, 2007
- DOE grades and ranks submissions to determine investment portfolio
- DOE submits to OMB in September
- "Passback" to agencies in Nov/Dec agencies modify submissions that are at risk
- Incorporated in President's Budget (February)

Milestones for each year:

- "Delivered Tflops-yrs"
 - Defined as available capacity expressed as average of DWF and asqtad inverter performance
 - "1 year" = 8000 hours
- "Deployed Tflops"
 - Defined as incremental capacity brought online, expressed as average of DWF and asqtad inverter performance
- External review of progress and next year's planned deployment by end of June

Year	Tflops-yrs Delivered	Tflops-yrs Deployed
FY2006	6.2 (QCDOC = 4.2)	2.0
FY2007	9	3.1
FY2008	12	4.2
FY2009	15	3.0

Lattice QCD Project - Budget

Funded operations at BNL, JLab, and FNAL in 2006 (fractions of a person):

Project + Base/SciDAC	sysadmin / technician	Scientific software & user support	site management
BNL	0.75	0.5	0.25
FNAL	1.75	0.5	0.25
JLab	0.65	0.5	0.25

Sysadmin/tech totals increase to 3.00 in 2007, 3.25 in 2008

Lattice QCD Project - Budget

Year	Personnel	Equipment
FY2006	\$650K	\$1,850K
FY2007	\$885K	\$1,615K
FY2008	\$ 9 55K	\$1,545K
FY2009	\$1030K	\$670K

Points of contact at the labs: Project Manager – Don Holmgren, FNAL Assoc. Project Mgr – Bakul Banerjee, FNAL BNL Site Mgr – Tom Schlagel FNAL Site Mgr – Amitoj Singh JLab Site Mgr – Chip Watson Metafacility Operations Mgr – Bálint Joó, JLab

Fermilab Status - Hardware

Current clusters:

- "QCD"
 - 127 nodes, 2.8 GHz Pentium 4, 1 GB memory
 - Myrinet (128th connection is to head node)
 - Online since June 2004
 - Performance (64 node runs):
 - DWF: 1400 Mflops/node Ls=16, average of 32x8x8x8 and 32x8x8x12
 - Asqtad: 1017 Mflops/node 14^4 local lattice/node
 - Total capacity: ~ 150 Gflops

Fermilab Status - Hardware

Current clusters (cont'd):

- "Pion"
 - 520 nodes, 3.2 GHz Pentium 640, 1 GB memory
 - Infiniband
 - Full cluster online in December 2005
 - Performance (64 node runs):
 - DWF: 1729 Mflops/node Ls=16, average of 32x8x8x8 and 32x8x8x12
 - Asqtad: 1594 Mflops/node 14^4 local lattice/node
 - Total capacity: ~ 860 Gflops

Fermilab Status - Hardware

Next cluster: "Kaon"

- Request for Proposals (RFP) released April 3
- Vendors must bid:
 - Dual processor, Intel ("Dempsey" dual core processors plus fully buffered DIMMs) or AMD (Opteron 270 or faster dual core processors)
 - Infiniband interconnect
- Bids due April 28
- Award May 17
- Deliveries in July, "Friendly Users" in August
- ~ 450 nodes, ~ 4200 Mflops/node,
 - ~ 1.9 Tflops total

Fermilab Status - Statistics

- Since April 1, 2005:
 - Users submitting jobs: 29 LQCD, 5 administrators
 - 104,000 jobs (90,333 multi-node)
 - 3.57 million node-hours (not including ~ 0.5 million node-hours on Pion, June-Sept, for configuration generation)
- Since start of project (Oct 1, 2005):
 - 3020 Tflops-hrs delivered (0.4 Tflops-yrs)
 - 92.8% uptime (excluding December)

Fermilab Status - Statistics

Job distribution by node count:

Fermilab Status - Statistics

Job distribution by total node hours:

Fermilab Status – Mass Storage

"Enstore"

- Robotic, network-attached tape drives
- Files are copied using "encp src dest"
- 15 MB/sec transfer rate per stream
- Currently using ~110 Tbytes of storage
- Cost:
 - \$375 for 1 Tbyte of tape (5 tapes)
 - \$1000 per tape slot in the robot
 - 1 Tbyte of tape + slots = ~ 0.5 dual CPU node

Fermilab Status – Mass Storage

"Public" dCache (/pnfs/lqcd/)

- Disk layer in front of Enstore tape drives
- All files written end up on tape ASAP
- Files are copied using "dccp src dest"
 - Pipes allowed
 - Also, direct I/O allowed (posix/ansi)
- On writing, hides latency for tape mounting and movement
- Can "prefetch" files from tape to disk in advance

Fermilab Status – Local Storage

Disk RAID arrays attached to head node

- /data/raidx, x = 1-6, total ~ 7 Tbytes
- Also, /project (visible from worker nodes)
- Data files must be copied by user jobs via rcp to/from head node
- Performance is limited:
 - By network throughput to/from head node
 - By load on head node
- Cost: \$2200 for 1 Tbyte (RAID'd)
 - 1 Tbyte = ~ 0.8 dual CPU node

Fermilab Status – Local Storage

"Volatile" dCache (/pnfs/volatile/)

- Consists of multiple disk arrays attached to "pool nodes" connected to Infiniband network
- No connection to tape storage
- Provides large "flat" filesystem
 - Users don't have to keep track of /data/raidx paths
- Provides high aggregate read/write rates when multiple jobs are accessing system
- Supports file copies (via dccp) and direct I/O (via libdcap: posix/ansi style calls)
- About 10 Tbyte available

Fermilab Status – I/O

User requirements needed for budgets and planning:

- Local disk storage (dCache and /data/raidx)
 Proportional to machine allocations
- Temporary tape storage (and duration)
- Archival tape storage

Fermilab Status - Security

- Kerberos
 - Strong authentication (instead of ssh)
 - Use kerberos clients or cryptocards
 - Linux, Windows, Mac support
- Transferring files
 - Tunnel scripts provide "one hop" transfers to/from BNL and JLab
 - See web pages for examples
- Annual training/testing
 - Required at all three sites

Fermilab Status – User Support

- Mailing lists
 - Lqcd-admin@fnal.gov
 - Lqcd-users@fnal.gov
- Transition to "help" tickets by summer
 - Submit via web form or e-mail
 - Admin's and users will be able to track responses
- Level of support
 - 10 x 5, plus best effort off-hours
 - Increasing automation (remote reboots)

Fermilab points of contact:

- Don Holmgren, <u>djholm@fnal.gov</u>
- Amitoj Singh, <u>amitoj@fnal.gov</u>
- Kurt Ruthmansdorfer, <u>kurt@fnal.gov</u>
- Jim Simone, <u>simone@fnal.gov</u>
- Jim Kowalkowski, jbk@fnal.gov
- Paul Mackenzie, pbm@fnal.gov

Questions?